WEB APPENDIX
The Customer Journey as a Source of Information

These materials have been supplied by the authors to aid in the understanding of their paper.

A Specification of model components

The model is informed by four types of behaviors: queries (q;;), clicks (yf;,), filters (£;5), and pur-

chases (y;;).

A.1  Query

We leverage the information in the search query through multiple query variables that capture the
context of a journey. These variables help capture journey-specific needs, even for different jour-
neys of the same customer. For example, day-of-the-week and time-of-the-day may be relevant to
infer whether a search query in a food delivery platform relates to a single-person weekday lunch
vs. a romantic Friday night dinner. In a travel setting, the number of passengers, dates of travel,
and destination, among others, can be informative about the context for what the user might be
looking for.

We denote by q;; the vector of query variables that describe journey j for customer ¢,

/
Qij = [Qijl QijM] )

where each component indexed by m € {1,..., M} describes a different type of query variable
(e.g., length of the stay, traveling with kids). Because these pieces of information are provided
by the customer to obtain a set of product results that match their preferences, we treat each
query variable as an outcome that depends on some unobserved component that captures the
customer’s true need in the focal journey We model q;; as a function of a vector of parameters
w; = [wjl ij]l.

We assume that given w;, the components of q;; are conditionally independent, that is:

M
plaijlw;) = [ | p(gijml|wjm)- 1)

m=1

!Potentially, customers could slightly modify the query along the journey while searching for a product to satisfy
the same need (e.g., changing the departing date when customers search for flight tickets). We model only the first
query by a customer in each journey due to the minimal additional information these often provide. That being said,
the model can easily be extended to learn from multiple query instances.
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Each type of query variable m could be of multiple types: (1) binary, (2) categorical, (3) continuous
real-valued, or (4) continuous positive-valued. We flexibly model ¢;;,, using a different distribu-

tion pr, (¢ijm|wjm) for each type of variable m,

Bernoulli(w;, ) if ¢;jm is binary
Categorical(wjpm,) if ¢;jm is categorical
Qigm ~ A (2)
exp(wjm) if ¢;jm is continuous positive-valued
| N (Wjm, 7,) if ¢;jm is continuous,

where each parameter wj;,, has the appropriate support given the distribution it governsE] Our
model can accommodate other distributions such as Poisson or Binomial for count variables, and

Student’s t-distribution or Cauchy for long-tailed continuous variables.

A.2 Joint model of clicks and purchase

We structure the modeling of clicks and purchase decisions in two phases. First, customers ex-
plore products through clicks and potential filtering to form a consideration set. Next, customers
proceed to the purchase decision stage, where they either choose an item from their considered
set or decide not to make a purchase. All of these decisions are guided by a shared set of customer

preferences, denoted as 3;;.

Click decisions Along the journey, the customer clicks through pages of product results. The
customer can navigate back and forth between clicking on products and refining their searches. In
each step, the customer decides among: (1) clicking on one of the products shown on the page to
consider it for purchase, (2) continuing to search to receive a new set of results (e.g., by adjusting
the query or filtering the results), or (3) ending the search and moving to the purchase decision
among those considered.

We model the click decision of alternative k at step ¢ of the journey using a discrete choice
model. We define Page,, as the set of products displayed to customer i in journey j at step ¢.
The customer faces a decision between: clicking on one of the displayed products k € Page,
continue searching to get a new set of products (k = s), or finish the search process and move to the
purchase decision (k = e), which could mean either purchasing a considered product or deciding

not to buy. We denote the choice consumer i makes at step ¢ of journey j by yf;, € Page,;, U {s, e},

2We choose to define o,, fixed across all journeys, to avoid the issue of singularity. That is analogous to approaches
that prevent regularity issues commonly found when estimating Gaussian mixtures with component-specific variances
(Bishop|[2006). These issues emerge when the mean of one of the Gaussian components is equal to a single data point,
which leads to a term contributing to the model likelihood that grows to infinity as the variance of such component
goes to zero.
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which we model using a multinomial probit specification with latent propensities v, such that

(& & :
Yijy = argmax {uiﬁk} , with
kePage; ;s U{s,e}

ZQJ.C 4 ijtk/ . fj + log-rankijtk N+ e ifke Pageijtv
Uijtk, = 5%9 + Eijts if k= s, ©)

0 .
,Bije + Eijte ifk=e,

where €1 — €ijte ~ N(0, a?), xfjtk is the vector of attributes of product &, ,ij is the vector of
customer- and journey-specific product-attribute preferences, ?jc is the intercept for clicking on
a product, f3; is the intercept for the decision to continue searching, and %e is the intercept for
finishing the search process, normalized to 0 for identification purposes. Note that by definition,
customers stop searching in the last observed step and move to the purchase decision (i.e., ¥, =
e).

We control for ranking effects on search (Ursu|2018) by incorporating the log of the position
of product k within the results page into the search in v}, and using 7 to capture such ranking
effectsE] Such a term also captures search costs within a page, along with the intercepts in
that capture users’ propensity to keep searching and are related to search costs across pages. We
denote the vector of product-attributes xf;,, to be ¢-specific to allow for a subset of all attributes
x;j1 to be shown differently in different types of pages. For example, while customers observe all
attributes at the moment of purchase, they may not observe all of them on certain pages while
searching. Similarly, the observability of certain attributes may even differ among different types
of pages (e.g., departing and returning results pages for flights in online travel). For example, the
attributes of the return leg of a flight are not shown when customers choose the first leg of the

flight, so they drop from the choice model.

Filter decisions Websites and apps usually collect other types of interactions —e.g., whether a
user filters results based on some attributes —information that can be used to further inform about
customer preferences in that particular journey. Unlike clicks, filters are not frequently observed
in the data—many journeys do not have filters, and when they do, they generally occur only once
along the entire journey. We avoid computational burden by modeling the filtering decision at the
overall journey level (rather than at the step level t); that is, we model whether the customer uses
a particular filter at any time during the journey.

We denote by ¢ € {1, ..., L;;} the level customer i in journey j can filter on and define f;; to be

the vector of summarized filter decisions for customer ¢ in journey j,

/
fij = [fijl fz’jLM] ;

3Following Ursul (2018), we include the log-position rank in the click decision but not in the purchase-given-clicks
decision.
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where each component f;;, is defined by

F 1 if customer ¢ filters on level ¢ within journey j
ijl =

0 otherwise.

We model each component f;; using a binary probit specification such that
fije ~ Bernoulli ((I> (ag +wijl o + ij’ . af)) , (4)

where o is the intercept of filtering on level ¢, B;; is the same set of preferences that drive clicks
and purchases, and af is the vector that relates those preferences to the filtering decision. It is this
term that allows the model to learn preferences for attributes by fusing filtering decisions about
those attributes. To control for other factors that may affect the filtering decisions (e.g., the overall
characteristics of unfiltered results), we include w;;, capturing a set of controls that summarize
the set of (unfiltered) results. In particular, we control in w;j, for the number of total products, the
percentage of products with level /, and the number of top 5 products with level ¢ in the unfiltered
resultsff

Purchase given consideration After clicking and possibly filtering through product results, cus-
tomers make the purchase decision. We model this as a discrete choice among the alternatives
in a consideration set C;;. Specifically, we define the consideration set as the set of products that
have been clicked on at least once during the course of the journey, plus the outside option of not

purchasing
Cij ={k . k € Page,;;, yfjtzkz, te{l,...,Tij}}. (5)

We model the purchase decision using a multinomial probit specification with latent propen-

R p .
sities u; ;.. That is,

yfj = arg max {uf]k} , Where
keC;;u{NoPurchase}
Op 13 o .
p Bz’j + Xijk - Bij + €ijik if ke Cl] (6)
Uik =

ﬁ%@ + €ijo if K = NoPurchase,

with €, — €50 ~ N (0, 012)), and where x;;;, is the vector of attributes of product £, Bi; is the same
vector of customer- and journey-specific product-attribute preferences from (@), 3;; is the intercept
for purchasing a product, and ?]9 is the intercept for not buying, normalized to 0 for identification

purposes.

*As journeys may contain multiple unfiltered results due to multi-session journeys, we average these controls
across the unfiltered results pages of all sessions within a journey.
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Finally, we define
B = (8%, Bos. g% B/ ' ?)
1] 17 17 z] bl 1] bl

as the vector of all clicks and purchase preferences.

B Model priors
B.1 Distributions

We detail the specification of the prior distribution for the model parameters.
First, for the population covariance matrix ¥ that governs customer heterogeneity in (7), we

choose the standard Wishart prior for the precision matrix X!,
L« Wishart(rg, Rp).

Second, we put priors on the Pitman-Yor process discount and strength parameters, d and aEI
respectively by

d~ Beta(¢ga (b%)
@ ~ Gamma(6, 69).

Third, we put priors on the location parameters ¢. by defining the base distribution of the
Pitman-Yor process, Fyy. As described in (I1)), the location parameters are drawn from 6. ~ Fy(¢y).
Following the notation in (8), consider #* and 6” as the components of # that correspond to query
parameters w; and click-purchase parameters p;, respectively. We define Fj as a multivariate

distribution factorized by each of the components of 6, defined by

Fy(0|¢po) = (H FGrn (05, dom) ) x N(0° |0, Vo),

where we assume Gaussian priors for the location parameter of click and purchase preferences,
and F, is defined accordingly to the support of the parameter that governs the distribution of

each query variable m described in (2). That is,

Beta(‘bﬂmm (b()mb) if Qijm is binary

Dirichlet(¢oy,) if q;jm is categorical
F2 (0% 60m) = 4 " 15 EEE -
Gamma(¢oma, Pomsy)  if gijm is continuous positive-valued

N (Pomps Pome) if gijm is continuous.

SWe restrict the model to a > 0.
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Finally, we put mean-zero Gaussian priors on all other parameters in the model including 7 in
@), and o9, a¥ and ) in

n~N(©0,s7)
o’ ~ N(0,54,0)
af ~N(0,S8,,), V¢
ol ~ N(0,844), V¢

We use the following hyperparameters for the model priors. For the Wishart priors, we use

ro = ng + 5and Ry = - In,, where ng is the dimensionality of 3;;. For the Pitman-Yor

discount and strength priors we use ¢d = 0.5, ¢{ = 5.0, ¢& = 1.0, and ¢¢ = 0.1. For the Pitman-Yor
base distribution we use the following hyperparameters: (a) ¢oma = Poms = 2 for Beta; (b) ¢pom = 1
for Dirichlet, (¢) ¢oma = Pomp = 2 for Gamma; ¢, = 0 and ®3,s = 100 for Gaussian; and (d)
pio = 0 and Vy' = 10* for 6. For the position effect priors, we use s2 =
governing the filter component, we use SO:}] =5 -L 57, =% Land S;,,IB =25-L

25. Finally, for the priors

C Blocked-Gibbs sampler algorithm

Our Metropolis-within-Gibbs MCMC sampling algorithm is based on|Ishwaran and James (2001)
approximation using the stick-breaking representation of the Pitman-Yor (PY) Process, truncat-
ing the infinite mixture by setting Vo = 1 for a large enough integer C. This approximation
allows us to draw context memberships of different journeys in parallel, significantly increasing
our sampling scheme’s speed. We use adaptive Metropolis-Hastings (M-H) steps to update the
PY parameters d and a as these full conditionals do not have a closed form (a has closed form only
if d = 0). We use Gibbs steps for all other parameters as their full conditionals have closed form.
Similarly to the click and purchase components, we use data augmentation for the filter decisions
and define uzfjg =g +wijl - o + B - ol + 55»;[, such that 5@]‘;4 ~N(0,1) and fje = Il(uzfjé > 0).
We sequentially update the parameters by,

1. Draw latent click utilities for alternative k € Page, ;, U {s} using a truncated Gaussian by,

Truncated- (ﬂfjtk, 1,lower = —c0, upper = O) if Y =€
ugjg ~ { Truncated- N/ <ﬁfjtk, 1,lower = max{ufjt_k, 0}, upper = oo) if yfj =k

Truncated- N/ <ﬂ§jtk, 1,lower = —o0, upper = max{ug;, k}) otherwise,

e _ A0c c .3z _ i C _ 30s 1 —
where gy, = ;7 + Xy, - Bj; +log-rank,,, - nif k € Page,;,, and uf;, = 5;7 if k = s.
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2. Draw latent purchase utilities by,

Truncated- N (ﬂi’ "1 1, lower = —o0, upper = O) if y;; = NoPurchase

ugy), ~ 4 Truncated- V/ (ﬂfjk, 1,lower = max{uj; ,0},upper = oo) if yj; = k

_p _ _ p .
Truncated- (uz ko L lower = —o0, upper = max{uij_ k}) otherwise,
=p _ 0p . AT
where Uy, = Bij + xijk - By

3. Draw latent filter utilities by,

s Truncated- N/ <042 +wigl o + B a?, 1,lower = —c0, upper = 0) if fije =0
Wije ~

Truncated- N/ (ag +wiil - af + ,ij’ : af, 1,lower = 0, upper = oo) if fijo=1.

4. Draw individual-level stable preferences p;. We define a vector of click, purchase, and filter

latent utilities for journey j,

-
[ufjtk — log-rank; ;. - 77] i

2. — p
T - e, 7

f 0
[“ije — oy — wige - a;u]g
and )Niij the corresponding “stacked” matrix of vectors multiplying 3;; in equations (3), (),
and (6). That is,

Xz‘j = | XP 5

where ij is the matrix of stacked click covariates. Specifically,

C e ] 01 0 0
it 100 x5
. ijtk

X,

LT (10 0 x5, ]
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Similarly, ij is the matrix of stacked purchased covariates,

0 0 1 Xijll

XR: 0 01 Xijk/ 5

/
_0 01 XijtKij ) |

~ /
andAijz [a’f...af...afij].

/
The columns of each of these matrices multiply 3;; = (B%C, ﬁ?f , ﬁ?f , fj’ ) , respectively;

which yields the terms in (3), (18), and (6).
We further define )NCZ as

and u; as

~

Finally, we draw p; ~ N'(fi;, S;) where

fii

Il
jYak:
—~
"
S
+
gl
£
v

5. Draw context membership z; as follows

TP
p(zj = c|) = 007]67
Z WC'PjC’

=1
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where Pj. = (H%Zl p(q,»jmlé?c‘“m)) ) (ﬂij — )N(ijui]f(ij@;’, 1), with p(g;jm|6%,,) denoting the
pdf of query variables as defined in (2), and p (ﬁij — )N(ij . ui\f(ij : 0; , 1) denoting the prod-
uct of elementwise normal pdf evaluated at each components of @;; — X;j - pt; with mean

X - 05 and variance 1.

. Draw the query components of context location parameters 62 for each context c. We denote
J (c) as the set of journeys j and n. = |7 (c¢)| as the number of journeys such that z; = ¢. For
each query variable m, we draw ¢, depending on the type of query variable modeled in
(). Specifically,

.
Beta ¢Oma + Z Gijm, ¢0mb + Ne — Zjej(c) Qigm if Qijm is binary
JjeJ(c)
o Dirichlet (gf)()m + [nGemis - - - s NGem Nm]T> if g;jm is categorical
em ™~
Gamma | ¢oma + Nes omb + 2. Gijm if gi;jm is continuous positive-valued
jeJ(c)
(N (fiems Sem) if gi;jm is continuous,

where NGemn = Zjej(c) IL(qz'jm = TL), gc_'rrlL = [¢arlno + 0-7:12] and ﬂcm = Sem Zjej(c) Qijm-
. Draw the click-purchase context location parameters 6. We define X, and u, as

X = [[Xi(j)j] e j(c)] , and u. = [[ﬁi(j)j - Xz‘(j)j ' Nz‘(j)] je j(c)] ,

where i(j) denotes the customer to whom journey j belongs to.

We draw 62 ~ N (fic, Sc), where

St =V XX,

[

fe = gc (V()_1 * o + Xéﬁc) .

. Draw ranking effect 7). Defining r as the vector of all log-rank, ,, values, and the vector of

differences in click utilities u' = [{ufjtk — B?jc + xfjtk’ . ij}ijtk], we draw 7 by

77 ~ N(ﬂn?‘gg)’
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10.

11.

where

_ -1 /
S =S, +rr

fiy = Sy (351-0+r’ur).

Draw a’. We define ﬁ{; as the vector of residual filter utilities where each component is an

observation (i, j, ¢) defined as

~f f w ! B8
UOZM jé WZJE 127 ij - Xy

We also define a binary matrix that multiplies the vector of intercepts a® to yield the re-
spective level for each observation. In other words, this matrix encodes in binary variables
the level / to which the observation (row) belongs, such that the entry in each row that
represents the observation (i, j, ¢) takes the value one for column ¢, and zero for all others.
Consequently, we draw a by

a® ~ N (a0, Sa):

where

5’ SaO + W Wo

lj'oz,O = Sa 0 ( -0+ VNVE)ﬁg)

0_ gx/,

Draw o?’. We define i/ vl = [{uZ 0~ o — B ol }U] as the vector of residual filter utilities,

and W, = [{W,L j g}ij] the matrix of filter controls for level /, and draw o by

a@" ~ N(ﬁ}uu ga,w,£)7

where
S 1
a,w E = S + WEWE
Y = S (S; 0+ Wil ) .
Draw o/ ,- We define %, 0= [{ul 0~ o — w! i a}f’}ij] as the vector of residual filter utilities,

and B, = [{ ﬁij}ij] as the matrix of preferences, where each row of the matrix contains the

vector of preferences corresponding to the respective row in @’ ,. Draw o} by

a? ~ N(ﬁ?a ga,,b’,f)a
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12.

13.

14.

15.

where

o—1 -1 /
Sa,ﬁ,@ = SCM,,B + BEBE

ﬁf = ga”g’g (S;}B -0+ Bléﬁ?u,z> .

(M-H step) Draw a proposal aP™P ~ p,_prop(+|a). Update a = aP*P with probability

Cc-1 T
a(a, a"P) = min {1’ Gamma (a”P|¢f, ¢7) [[.—; Beta(Ve|l —d, aP™P + c-d) pa—prop(ala™P) } .

Gamma (a|¢8> Qb(f) HCC’:_ll Beta (ch|1 —d,a+c- d) pafprop(apr0p|a)

We use a log-normal p,—prop(-|a) = log N (log(a), 72), where we use a vanishing adapta-
tion procedure (Atchadé and Rosenthal 2005) to adapt the proposal step size to target an
acceptance rate of 0.44 (Gelman et al.|[1995) through

i n < 200,

|72_1 + £(ap, — 0.44)] n > 200,

where ap,, is the empirical acceptance rate up to iteration n. Note the proposal distribution

. . . . Da—prop(alaP™P)  gprop
is not symmetric and yields a ratio Pe e (@P™P]a) -

(M-H step) Draw a proposal d’™P ~ py_prop(-|d). Update d = dP™P with probability

o) — i 1, B @I 00) TIC Beta (V1 — 70 a0 d7) 110
a(d, =min< 1, . .
Beta (d|¢d, ¢9) [T Beta (Vo|l —d , a+c-d) 1/Pd—prop (d|dPoP)

We use a logit-normal proposal distribution pg—prop(-|d) = logit—N (logit(d), s2), where the

d ) and the logit-normal pdf is defined by

logit function is defined by logit(d) = log (ﬂ ,

logit—N (z|p,0%) = ~ lzﬂﬁ exp {—W}. We adapt s? analogously to 72 in the

previous step.

Draw context probabilities 7., by drawing the stick parameters V,. from

C
VC~Beta<1—d+nc, a+c-d+ Z nc/>,
d=c+1

and compute 7, according to (12).

Draw population covariance matrix 3, by

»~! ~ Wishart(ry, R;),
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where

rm=ro+1

Ri'=Ro '+ Zui i
i
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D Posterior distribution of holdout journey preferences

We outline the procedure to update the posterior distribution of preferences for holdout journeys,
given data on the focal journey and past journeys. (This corresponds to the right-hand side of
(14)). There are several relevant considerations for this procedure.

First, we leverage the Pitman-Yor process when making inferences on new journeys, by al-
lowing for a previously unobserved context to be discovered in this focal journey. Second, as the
posterior of global parameters is obtained with a large number of journeys in the training sample,
we approximate the posterior of these parameters given all training data plus focal journey j, by
the posterior without focal journey j. That is, the inference on global parameters remains largely
unchanged by the addition of a single journey (except for discovering a context that has not been
observed before, as mentioned above). This assumption allows us to maintain computational ef-
ficiency by not re-estimating the whole model when updating the inference on current journey
preferences as new data arrives. Third, as commented in Section the context of past journeys
is conditionally dependent on the focal journey given past and current journey data, because sta-
ble preferences and contexts both jointly determine the outcomes in both journeys. Therefore, in
the process of drawing preferences for new journeys, we update the inferences for past journeys
of the focal customer as well.

For each customer i, we denote the focal (holdout) journey by j, with j’ referring to journeys
different from the focal one. The set of past journeys (not including j) is denoted by 7 (i), the
vector of contexts of all past journeys by z; _; = {z;;/}jc7(;), the entire journey data for a journey

7' by Hiy = {dij’, Y5, s figLs yfj,}, the collection of past journey databy H; = |J M, j, the
’ €T (@)
set of global parameters by ® EI and all training data by D.

We update the posterior of preferences for focal journey j, 3;;, by

p(Bijldijs Yijies Lijts His D) = fp(ﬁz‘j!qz'jvyfjl;taEijt,’f'li, ®) - p(®|D, qij, Yij1.4s Lije)dP

~ Jp(/aij’qiﬁyicjlzhﬁijtﬁHiv ®) - p(®|D)d®, (8)

where p(®|D) is the posterior distribution of the global parameters given the training data. We
expand the left term in (8), by drawing customer stable preferences, context-specific parameters,

focal context membership, and past journeys contexts and marginalizing them,

p(Bijldij Yijr.e Lijes Hi, @) =

Jp(ﬁz’j,mﬁjﬂj,zij,zi,j|qzj,yfj1;t7£z‘jt>7{i, ®) -dp; - dvyj - dy—j - dzij - dzi—j, (9)

,,,,,
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Wi
where v_; = {vj/}jc7(;). Finally, noting that v; = ( ! ) we can write this posterior as being

Pj
proportional to the joint density
P(Bijs i Vs Y=j» Zij»> Zi—5|Qijs Yijres Lige, Hi, @)
o p(Bijs Bis Vs V—js Zijs Zi—js Aigs Yireo Ligts Hil, P)
= plaijlw;) - P51 i, 05 0) - P(Lijelpi, pj, @0, o) - 1{By; = pi + pj}

H p(,Hij’“th Y—j>s q))
J'eT(i)

p(il2) - p (2 il d (e 6350 ) - T p (2 viladfre 0350 ). (0)
J'eJ (i)

where C is the number of contexts (which is a latent variable, and thus, it is drawn from the
posterior p(®|D)).

We update those parameters using steps 1, 2, 3, and 4 exactly as shown in Web Appendix
and we adapt steps 5, 6, and 7 (and add step 8) to allow for previously unobserved contexts to be

drawn by:

5%. Draw context membership z; € {1... C} U {C + 1} as follows

(ne — d) - Pje, ifc<C
(a—l—d-é)'P]’-‘= ife=C+1

where P;. as defined in step 5 in Web Appendix|C, and
M ~ ~
Pi = (H p(Qijm|¢0m)) P (ﬁij — Xijpi| Xij, pos Vo)
m=1
the product of posterior predictive likelihoodsﬂ such that

P(Gijm|dom) = fp(Qiij;U’L) - (0| dom) dbyy,
p (aij — X111 X5, o, Vo) = fp (aij - Xz’juﬂiij@f) N (07|, Vo )doP.
6%, If z;; = C + 1, then draw the query components of context location parameters ‘9%“ follow-
ing step 6 in Web Appendix

7% If 25 = C + 1, then draw the click-purchase context location parameters Qgﬂ following step
7 in Web Appendix

7 As all prior-likelihood pairs are conditionally conjugate, these posterior predictive likelihoods have closed form.
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8% If z;; = C + 1, then update C' = C + 1, and repeat the same steps for all j' € 7 (c).
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E Details on predicting future activity for unfinished journeys
E.1 Approximation of consideration probabilities (XGBoost)

To compute the second term in (15), consider the probability that a product k belongs to the con-
sideration set at the end of the journey (i.e., right before purchase) given the clicks observed up
to step ¢, and given preferences 3;; inferred before then, i.e., p(k € C;j|yf;.+, Bij). If the product
has been clicked before step ¢, the probability of it being considered is one. If the product has not
been clicked before ¢, the probability of it being considered afterwards involves an infinite sum
because we do not know how many more steps the journey will have. Theoretically, one could
build a forward-looking search model to estimate the consideration set probabilities. Given how
non-linear our journeys are and the large number of possible items to query, filter, and click on,
such a model would be intractable. Additionally, in order to use our model to simulate future
clicks and choices we would need to observe hypothetical choice sets that depend on the path
being simulated. These choice sets are observed during training, but unobserved for journeys that
are incomplete. Since customers can visit the website across multiple sessions within the same
purchase journey, simulating choices also involves defining a process for drawing choice sets. For
example, consider making after-query predictions on a journey that lasted a single step. When
simulating choices, there is no data about what products may be available after the first step,
especially if the simulated journey takes multiple steps.

To make such a forecast tractable and scalable, we approximate this probability by imputing
the predictions from a flexible (reduced-form) model that, leveraging finished journeys in the
training data, estimates the probability that a product will be added to the consideration set.

Specifically, we infer consideration given product characteristics x;;;, and preferences 3;; through

a reduced-form predictor function g¢(x, 3) such that,

if clicked on before, i.e., 3t' < t, yf;, =k,

p(k € Cijlyiji., Bij) ~ (11)

ge(Xijk, Big)  ~ -

Such a prediction function can be estimated using standard machine learning (ML) models
trained using all displayed products in finished journeys of the training data, for which we pre-
cisely observe whether each product was added to the consideration set. In our application, we
use a binary XGBoost model to estimate the function g¢(x, 3). As features for the XGBoost model,
we use the exact observed product attributes used in the purchase model (x;;) as well as draws
from the posterior distribution of (individual-level) customer preferences (3;;), obtained from the
main model when estimated using the same journeys in the training data. Note that adding cus-
tomer preferences as features enriches the ML model predictions as those capture the unobserved

individual-level preferences.
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In our empirical application, consideration is operationalized slightly differently for the two
types of flights: one-way and roundtrip. For one-way itineraries, the details page is shown after
a single click on a one-way results page, the moment at which we assume the flight is being con-
sidered. For roundtrip itineraries, on the other hand, the customer must click on the outbound
component of the flight (on an outbound results page), and on the inbound (return) component of
the flight in order to see the details page and for the product to be considered. Accordingly, we
train three different models, each aiming at a different prediction task: One that predicts consid-
eration for one-way flights (g,.,), another one that predicts whether the outbound component of
a roundtrip flight is considered (g,.t), and another one that predicts, conditional on the outbound
component being considered, whether the inbound component is also considered (g;y).

Following (I1)), we compute the consideration probabilities given whether the customer has

clicked on the itinerary, or a portion of the itinerary. That is,

. 1 if flight was clicked on before
p(k € C;;|One-way, Yij1:ts Bij) =
Gow(Xiji, Bij) if flight has not been clicked on yet,

1 if both legs were clicked on
p(k € Cij|Roundtrip, yi;1.¢, Bij) ~ § 1 Gin(Xijks Bij) if only outbound leg was clicked on

Gout (Xijk, Bij) - §in(Xijk, Bij)  if no leg has been clicked on.

We estimate tree-based classifiers (XGBoost and Random Forest) to predict consideration in
hold out journeys. We train such models using the data from the training sample (including
clicks as the dependent variable and the product attributes as features) as well as draws from
the posterior distribution of the vector of preferences (which are included as additional features
in our classifier).

Because the parameters 3;; are estimated in a Bayesian manner (i.e., we don’t have a point
estimate but a posterior distribution), we draw a sample of 50 draws from the posterior distribu-
tion of 3;; when training the consideration of each journey. Specifically, for each product k in a
journey, we create 50 observations, each with a feature vector concatenating the vector of prod-
uct attributes, x;;;, and the drawn preferences Bijd. We sample 1,000,000 observations (~1% of
total) to train the classifiers. We use one-way observations to train §,,; and roundtrip observa-
tions to train §oy:. To train g;,, we only use roundtrip observations such that the outbound leg

of the corresponding itinerary was clicked onﬂ We use as binary outcomes whether the corre-

8 Arguably, there could be selection bias affecting our sample as we would make predictions for those products not
clicked on yet based only on those clicked on the outbound leg. However, we argue that this approach is the most
sensible given the task at hand. First, any potential selection bias should hurt the out-of-sample performance, and,
thus, be captured by the out-of-sample performance of the predictions of the whole model. Second, those predictions
should only be relevant for products that had their outbound leg clicked on, or that the outbound model predicts will
be clicked on. Therefore, even if predictions are off for products that are unlikely to be clicked on, they are already
captured by Gout.
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sponding product of each observation was clicked on during the journeyﬂ and the corresponding

cross-entropy loss (i.e., binary logistic) to train the models.

Table E.2: Performance of XGBoost consideration predictors.

Consideration

Model Balanced accuracy Precision Recall F1 AUC
One-way (Gow)

XGBoost 0.2287 0.3893 0.0680 0.1158 0.9064

Random Forest 0.3403 0.6486 0.0320 0.0610 0.6898
Outbound (§,y¢)

XGBoost 0.9598 0.9406 0.9789 0.9594 0.9958

Random Forest 0.8027 0.8304 0.7749 0.8017 0.9593
Inbound (g;,)

XGBoost 0.3488 0.5482 0.1494 0.2348 0.9233

Random Forest 0.3928 0.6879 0.0977 0.1711 0.7737

We use a 80%-20% training/test split, and ten-fold cross-validation on the training sample over
a grid to tune the hyperparameters of each classifier (e.g., the learning rate and the maximum
depth of the trees for the XGBoost). Table[E.2|shows the performance of both the XGBoost and the
Random Forest on each prediction task. Because the XGBoost overall accuracy metrics (F1 and
AUC) are superior in all tasks, we use the results of the XGBoost when augmenting consideration

sets.

°For the outbound leg model, we use as an outcome whether the product has the same exact outbound leg as
any product that was clicked on during the journey. That is, if an outbound leg is clicked on within a results page,
all returning flights displayed on the next page (which share the same already-clicked outbound leg) are defined as
positive labels for the predictive model.
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E.2 Computing purchase probabilities

Following (11I), we can now approximate the conditional purchase probabilities in (15) using
a Monte Carlo approximation where we draw consideration sets. In each iteration of our MC
simulation, we form each consideration set by first including all products that have been clicked
on up to that point. Subsequently, for all remaining products, we add them to the consideration
set with a probability given by ge(x, 3). Finally, once we have drawn the consideration set in each
iteration of our simulation, we compute the purchase probabilities given each consideration setm
All other products that do not belong to the consideration have a null purchase probability. We
outline such procedure in Algorithm [[|where we compute the purchase probabilities given a draw

from the posterior distribution p(8;|qij, Y5;1.¢, Lijt)-

Algorithm 1 Computing purchase probabilities

Input
A vector of preferences 3;;
A set of products with at least one click C7* = {k| 3t' < t, y§;,, = k}
Number of samples S for the Monte Carlo approximation
Trained predictor function g¢(x, 3)
Output
p(yfj |yicj1:t7 Bij)
Procedure
forall s — 1:S5do
Initialize consideration set C;; < C¢f*
forall k ¢ CoP* do
Draw u ~ U(0,1)
if u < ge(xijk, Bi;) then
Cl‘j <« Cij ) {k}
end if
end for
Compute p, = p(y};|Cij, Bi;) using GLK simulator and Equation (6)
end for
Return p(y%; |51, Bij) ~ & Yoy Ds

mSpecifically, we use the GHK-algorithmGeweke| (1991) to approximate purchase probabilities from a multinomial
probit model given a consideration set.
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F Empirical application: Additional summary statistics

F.1 Product attributes
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Table F.3: Summary statistics of product attributes in page results

Product attribute Mean SD Quantiles
5% 50% 95%
Product level attributes
Price 1,547 3,269 196 751 5,320
Cheapest price per journey 698 1,526 98 401 2,117
Outbound level attributes
Length of trip (hours) 11.28 8.49 2.05 8.42  28.60
Shortest length of trip per journey (hours) 5.86 5.05 1.25 4.07  17.08
Number of stops: Non stop 0.20 0 0 1
Number of stops: One stop 0.59 0 1 1
Number of stops: 2+ stops 0.21 0 0 1
Alliance: Alaska Airlines 0.04 0 0 0
Alliance: Frontier 0.01 0 0 0
Alliance: JetBlue 0.03 0 0 0
Alliance: Multiple alliances 0.07 0 0 1
Alliance: Other — No alliance 0.07 0 0 1
Alliance: OneWorld (American) 0.27 0 0 1
Alliance: Skyteam (Delta) 0.27 0 0 1
Alliance: Spirit 0.02 0 0 0
Alliance: Star Alliance (United) 0.23 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.04 0 0 0
Dep. time: Morning (5:00am — 11:59am) 0.47 0 0 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.31 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.18 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.05 0 0 0
Arr. time: Morning (5:00am — 11:59am) 0.24 0 0 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.34 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.37 0 0 1
Inbound level attributes
Length of trip (hours) 11.08 9.02 1.83 7.92 29.50
Shortest length of trip per journey (hours) 6.17 5.31 1.25 427 17.75
Number of stops: Non stop 0.19 0 0 1
Number of stops: One stop 0.70 0 1 1
Number of stops: 2+ stops 0.11 0 0 1
Alliance: Alaska Airlines 0.02 0 0 0
Alliance: Frontier 0.02 0 0 0
Alliance: JetBlue 0.02 0 0 0
Alliance: Multiple alliances 0.02 0 0 0
Alliance: Other — No alliance 0.07 0 0 1
Alliance: OneWorld (American) 0.51 0 1 1
Alliance: Skyteam (Delta) 0.13 0 0 1
Alliance: Spirit 0.05 0 0 1
Alliance: Star Alliance (United) 0.15 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.03 0 0 0
Dep. time: Morning (5:00am — 11:59am) 0.65 0 1 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.18 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.14 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.04 0 0 0
Arr. time: Morning (5:00am — 11:59am) 0.55 0 1 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.19 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.23 0 0 1
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F.2 Filter construction and summary statistics

As mentioned in the main manuscript, the focal company did not collect the action of “filtering”
directly. Rather, we infer such a behavior from the flight results we observe in the data. Specifi-
cally, we construct filter data conservatively in the following manner: (1) We infer that a filter was
applied if all product results on a page have the same level on a product attribute (e.g., non-stop)
and this does not occur in the first page of results (2) We allow multiple filters on a page as long
as they belong to different attributes (e.g., American Airlines and non-stop).

Similar to the click and purchase data, airline data in filters is equally sparse, so we aggregate
them into filters at the alliance level. That said, we still infer whether a filter was applied on a
page using the airline data, as customers could only apply filters at the airline level and not at
the alliance level. For example, if a page contains results from multiple OneWorld airlines (e.g.,
American Airlines and British Airways results), we do not define those results as resulting from
a filter, as the platform did not allow customers to filter specifically on alliances. However, we
define a filter on the OneWorld alliance if all flights belong to a single airline that belongs to the
OneWorld alliance (e.g., all flights American Airlines or all flights British Airways).

Table [F.4 shows, per attribute and level, the percentage of first-party journeys where a filter
was applied.

Table F.4: Percentage of journeys with filters in attributes.

Attribute Level Proportion journeys filtered
Mean s.e.
Alliance OneWorld 0.020 0.001
Skyteam 0.016 0.001
Star Alliance 0.017 0.001
Alaska Airlines 0.003 0.000
Frontier 0.001 0.000
JetBlue 0.006 0.000
Spirit 0.001 0.000
OTHER.NO_ALLIANCE 0.008 0.001
Stops Non-stop 0.138 0.002
One stop 0.038 0.001
Departure time  Early morning (0:00am - 4:59am)  0.004 0.000
Morning (5:00am - 11:59am) 0.032 0.001
Afternoon (12:00pm - 5:59pm) 0.027 0.001
Evening (6:00pm - 11:59pm) 0.028 0.001
Arrival time Early morning (0:00am - 4:59am)  0.002 0.000
Morning (5:00am - 11:59am) 0.018 0.001
Afternoon (12:00pm - 5:59pm) 0.019 0.001
Evening (6:00pm - 11:59pm) 0.021 0.001

"Because the website does not filter by default, a constant attribute on the first page reflects limited supply, not a
filtering constraint.
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G Empirical application: Additional results

G.1 Context-specific parameter estimates

Table G.5: Posterior mean of location click and purchase parameters. Contexts 1-11

Context

Parameter 1 2 3 4 5 6 7 8 9 10 11

Query
Is it roundtrip? Yes 024 091 090 099 097 093 095 099 020 09 097
Is it domestic? (within EU is domestic) Yes 1.00 100 1.00 000 002 1.00 0.00 1.00 008 000 0.03
Flying from international airport? Yes 055 074 048 0.87 074 050 094 062 090 090 0.90
Market: US Domestic 098 095 097 0.00 000 097 0.00 093 0.00 000 0.00
Market: US Overseas 0.00 0.00 0.00 083 001 000 072 000 000 078 0.01
Market: Non-US across continent 0.00 0.00 0.00 0.15 005 0.00 026 000 009 020 0.08
Market: Non-US within continent 0.00 0.02 0.00 0.01 007 0.00 001 004 019 001 0.10
Market: US North America 0.02 0.02 0.03 0.00 088 0.02 0.00 0.03 072 000 081
Type of location searched: Airport 092 089 093 0.88 090 0.88 0.89 091 09 085 081
Type of location searched: Both 0.02 001 0.02 0.02 006 0.04 0.04 0.02 007 0.04 0.07
Type of location searched: City 0.05 0.10 0.05 010 004 0.08 0.07 0.07 003 012 0.12
Trip distance (1000s kms) 187 253 1.84 972 271 080 971 236 253 89 277
More than one adult? Yes 017 039 024 028 046 022 018 050 026 026 047
Traveling with kids? Yes 0.04 013 0.06 003 017 0.05 0.11 017 010 0.07 0.12
Is it summer season? Yes 043 039 042 000 026 036 021 000 062 098 021
Holiday season? Yes 0.00 0.00 0.1 006 007 001 0.00 032 000 000 0.09
Does stay include a weekend? Yes 015 089 0.99 1.00 097 083 1.00 099 025 1.00 0.90
Length of stay (only RT) (days) 230 525 563 1477 9.83 388 45.67 616 281 1316 740
Searching on weekend? Yes 019 021 021 025 024 019 026 017 024 027 020
Searching during work hours? Yes 052 052 052 051 055 054 037 059 042 043 0.60
Time in advance to buy (days) 2395 5821 41.18 107.77 8179 37.34 53.67 111.04 29.07 39.38 92.67

Preferences
Intercept Search: OW Search -0.02 -028 001 -014 0.04 -0.19 0.06 0.09 -006 -0.18 -0.16
Intercept Search: RT Outbound -022 -051 -013 -070 -013 -049 -010 -0.09 -024 -041 -0.45
Intercept Search: RT Inbound -0.03 -011 -026 -0.18 -001 -013 -0.11 -0.15 -0.06 -0.10 -0.04
Intercept Click: OW Search -0.81 -0.37 -0.61 0.04 008 -009 -008 -009 -036 -0.02 -0.03
Intercept Click: RT Outbound -028 -017 -018 -0.14 -018 -043 -031 -061 -0.04 -021 -043
Intercept Click: RT Inbound 0.05 -0.18 0.19 028 035 -0.15 043 008 -0.02 015 -0.13
Price -019 002 -037 -019 -018 015 -034 -015 -0.03 -0.06 0.32
Length of trip (hours) -059 -054 -090 -059 -085 -020 -0.69 -046 -049 -021 -0.09
Number of stops: Non stop 011 043 0.60 031 060 014 035 018 -0.02 022 0.03
Number of stops: 2+ stops -0.33 -0.15 -0.28 -046 -0.12 -006 -040 -0.10 -0.10 -0.25 -0.05
Alliance: Skyteam (Delta) -0.02 -012 -018 -0.09 -0.14 -009 -0.01 -006 -0.12 003 -0.10
Alliance: Star Alliance (United) -0.10 -0.19 -0.21 014 012 -016 -0.06 -0.09 002 -0.06 -0.06
Alliance: Alaska Airlines -0.06 -0.08 0.01 002 -010 -001 013 -0.01 -0.07 -0.01 -0.04
Alliance: Spirit -021  -0.02 -0.21 001 000 004 -006 -005 -001 000 0.01
Alliance: JetBlue -0.02 023 -0.01 000 008 013 -013 -003 004 004 0.02
Alliance: Frontier -011 006 -0.03 -0.03 000 0.02 -0.02 001 006 001 0.00
Alliance: Other — No alliance -0.09 -0.05 -0.04 005 002 -0.03 0.12 012 -0.14 -0.06 -0.04
Alliance: Multiple alliances -0.13  -0.07 -0.10 002 -008 -002 -0.09 -004 -009 000 0.03
Outbound dep. time: Early morning (0:00am - 4:59am) -0.16 -0.01  0.07 0.05 0.1 0.01 -0.08 0.01 -0.03 -0.01 -0.02
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.08 -026 -0.09 003 001 -003 -014 -006 -0.04 -0.10 -0.07
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.27 -021 -0.07 -0.07 -0.10 -0.04 -0.11 -0.01 -0.03 -0.07 -0.07
Outbound arr. time: Early morning (0:00am - 4:59am)  -0.11 -0.14 -0.20 0.00 -005 -0.04 -011 -005 -0.03 -0.05 -0.02
Outbound arr. time: Afternoon (12:00pm - 5:59pm) 010 013 019 -011 0.04 -011 -0.05 -0.02 -0.09 -0.12 -0.08
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.01 -017 012 -008 -0.12 001 -0.14 -0.14 -0.07 -0.01 -0.06
Inbound dep. time: Early morning (0:00am - 4:59am) -0.08  0.11  0.00 010 -001 012 -007 -0.15 -0.02 011 0.10
Inbound dep. time: Afternoon (12:00pm - 5:59pm) 010 023 035 005 015 -0.01 0.07 0.09 -0.01 0.00 -0.03
Inbound dep. time: Evening (6:00pm - 11:59pm) 0.06 -0.03 0.06 0.05 -004 -0.00 012 -001 001 003 -0.01
Inbound arr. time: Early morning (0:00am - 4:59am) -0.11  0.05  0.00 0.02 005 0.07 -013 -007 000 011 0.08
Inbound arr. time: Afternoon (12:00pm - 5:59pm) 001 003 014 -004 0.09 000 0.09 0.03 -0.05 -0.02 -0.06
Inbound arr. time: Evening (6:00pm - 11:59pm) 020 021 044 -001 017 -0.01 -0.05 0.09 0.00 0.02 -0.04
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Table G.6: Posterior mean of location click and purchase parameters. Contexts 12-22

Context

Parameter 12 13 14 15 16 17 18 19 20 21 22

Query
Is it roundtrip? Yes 009 016 09 031 037 027 013 017 0.09 0.05 092
Is it domestic? (within EU is domestic) Yes 000 094 019 1.00 097 0.00 0.00 018 0.06 1.00 0.71
Flying from international airport? Yes 090 100 099 044 1.00 094 0.89 097 0.88 052 1.00
Market: US Domestic 000 005 0.00 098 015 0.00 0.00  0.00 0.00 096  0.01
Market: US Overseas 087 000 000 0.00 0.00 0.66 079 0.01 0.00 0.00  0.00
Market: Non-US across continent 011 000 0.06 000 0.00 0.30 019 0.15 0.06 0.00  0.01
Market: Non-US within continent 001 093 029 001 074 004 0.01 043 0.36 0.02 097
Market: US North America 000 002 065 001 011 0.00 0.00 041 0.58 0.02  0.01
Type of location searched: Airport 084 076 083 090 076 0.85 0.88 0.87 0.79 091 084
Type of location searched: Both 001 010 0.08 004 003 0.04 0.03  0.09 0.16 0.06 013
Type of location searched: City 015 014 0.09 005 022 0.11 0.10 0.04 0.06 0.03 0.03
Trip distance (1000s kms) 981 116 241 050 059 870 9.84 237 2.72 239 137
More than one adult? Yes 019 040 008 013 048 0.17 029 0.03 0.42 045 041
Traveling with kids? Yes 006 009 001 003 013 005 0.02 001 0.07 011 012
Is it summer season? Yes 057 056 059 043 037 040 0.01  0.10 0.03 0.02 022
Holiday season? Yes 000 001 0.00 000 002 0.00 0.15  0.00 0.19 0.37  0.06
Does stay include a weekend? Yes 030 025 099 016 041 015 011 023 0.24 025 0.90
Length of stay (only RT) (days) 653 292 855 156 392 3.09 340 3.17 4.03 421 696
Searching on weekend? Yes 018 029 014 022 028 026 017 012 0.22 018 027
Searching during work hours? Yes 034 029 047 058 031 041 048 041 0.30 050 029
Time in advance to buy (days) 2834 30.26 2597 1445 6045 46.61 121.05 812 109.18 116.00 73.98

Preferences
Intercept Search: OW Search -030 012 019 -016 -015 -031 -0.02 -0.15 014 -0.01 -0.12
Intercept Search: RT Outbound 001 -004 -017 -0.08 -023 -0.30 0.03 -0.22 009 -0.02 -0.34
Intercept Search: RT Inbound 017 -008 -0.05 002 0.01 -003 -0.02 0.01 0.02  -0.01 0.01
Intercept Click: OW Search -031 -034 -006 -046 -035 -034 -028 -014 -029 -032 -0.01
Intercept Click: RT Outbound 006 -006 -052 -019 -016 -024 -020 0.02 -0.04 0.02 -0.23
Intercept Click: RT Inbound 001 000 002 016 -0.04 -0.04 0.09 -0.03 003  -0.04 0.2
Price -0.38 -011 -0.08 -0.04 017 013 -014 -015 -013 -0.15 0.3
Length of trip (hours) -045 -053 -033 -023 -0.22 -0.08 -0.35 -0.35 -0.38 -0.29 -0.15
Number of stops: Non stop 0.02 005 -0.00 -005 -0.11 -006 -004 018 -006 -0.13 0.06
Number of stops: 2+ stops -015 -0.09 -0.09 -0.09 -003 -012 -030 -0.11 -0.01 -0.07 -0.03
Alliance: Skyteam (Delta) -0.16 -005 -0.07 -0.04 -016 -012 -0.09 -005 -0.08 -0.07 -0.03
Alliance: Star Alliance (United) -0.07 002 -007 -016 -013 -018 -0.09 -001 -0.03 -0.01 -0.04
Alliance: Alaska Airlines 002 -003 004 -0.07 -0.03 -0.02 0.03 -0.05 002 -0.06 -0.03
Alliance: Spirit 000 -003 -0.02 000 000 002 -0.02 004 -0.04 0.02  0.02
Alliance: JetBlue 010 -003 -0.02 -001 -002 002 -010 012 -0.08 0.03  0.06
Alliance: Frontier 0.06 -004 -001 -0.02 -0.04 000 -0.01 0.03 001  -0.03 0.0
Alliance: Other — No alliance 010 -013 -0.010 002 -011 -0.03 -005 -008 -001 -0.03 -0.03
Alliance: Multiple alliances -009 012 -007 002 -0.01 0.02 -012 004 -0.01 -003 0.00
Outbound dep. time: Early morning (0:00am - 4:59am) -0.02  0.02 -0.04 -0.02 0.07 0.04 -0.12  -0.01 -0.10 0.00 -0.02
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.04 000 -010 -0.14 -0.08 -0.10 -0.12 -0.09 -0.08 -0.11 -0.01
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.06 -0.17 000 -0.16 -0.19 -0.17 -0.06 -0.07 -0.04 -0.12 -0.04
Outbound arr. time: Early morning (0:00am - 4:59am)  -0.13 -0.09 -0.06 0.00 -0.04 -0.05 -0.06 -0.01 -0.08 -0.10 0.00
Outbound arr. time: Afternoon (12:00pm - 5:59pm) -0.03 004 -005 -023 -0.04 -010 -026 -0.08 -0.14 -0.01 0.00
Outbound arr. time: Evening (6:00pm - 11:59pm) -013 -0.14 -018 -019 -022 -012 -018 0.05 -0.10 -0.09 -0.02
Inbound dep. time: Early morning (0:00am - 4:59am) 015 -0.04 -0.07 -006 0.00 007 -009 012 -0.04 0.05  0.06
Inbound dep. time: Afternoon (12:00pm - 5:59pm) -0.02 006 -0.06 008 -0.02 -0.02 0.01  0.00 0.02 -0.01 0.03
Inbound dep. time: Evening (6:00pm - 11:59pm) -0.04 002 003 -0.01 -0.01 -0.01 0.04 -0.03 0.03  -0.02 -0.01
Inbound arr. time: Early morning (0:00am - 4:59am) 012 004 -003 000 0.00 009 -008 010 -0.03 0.01  0.02
Inbound arr. time: Afternoon (12:00pm - 5:59pm) 0.00 -001 0.00 0.00 000 -0.02 0.01 -0.01 004 -0.04 001
Inbound arr. time: Evening (6:00pm - 11:59pm) 000 004 002 010 0.00 0.00 0.00 0.00 000 -0.02 -0.02
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G.2 Relative differences across contexts (all variables)

We normalize the location parameters to account for how they vary across contexts and how much
uncertainty their posterior have. First, for each context ¢, we compute the posterior mean of each
location parameter .. Second, we compare these location parameters with the population mean
level of those same parameters, but now we include query parameters as well. We subtract these
two to measure whether contexts are above or below average on each of the query parameters and
click and purchase preferences. Finally, we normalize these differences by dividing by the square
root of the posterior variance across journeys. This variance is composed by two terms (similar to
ANOVA): (1) the within-context posterior variance of each 6., which measures the posterior un-
certainty of each location parameter 6.; and (2) the across-context variance of all 6, with respect to
the population mean, which captures how much variance is explained by the differences between
contexts. By normalizing the location parameters, we can now compare contexts with respect to

whether they score higher or lower than average on each of the query parameters and preferences.
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Figure G.2: Posterior mean of all context location parameters 6., relative to the average in the pop-
ulation. The top figure shows how each context deviates from the average with respect to the query
variables. The bottom figure shows deviations with respect to the preference parameters. Blue (red)
boxes mean positive (negative) deviation from the average in the population.
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Length of stay (only RT) (days) .

Searching on weekend?

Query parameters

Searching during work hours?

Time in advance to buy (days)

Intercept Search: OW Search
Intercept Search: RT Outbound
Intercept Search: RT Inbound
Intercept Click: OW Search
Intercept Click: RT Outbound
Intercept Click: RT Inbound
Price

Length of trip (hours)

Number of stops: Non stop
Number of stops: 2+ stops
Alliance: Skyteam (Delta)
Alliance: Star Alliance (United)
Alliance: Alaska Airlines

Alliance: Spirit

Query and preferences parameters 6.

Alliance: JetBlue

Alliance: Frontier

Preferences

Alliance: Other ... No alliance

Alliance: Multiple alliances

Outbound dep. time: Early morning (0:00am - 4:59am)
Outbound dep. time: Afternoon (12:00pm - 5:59pm)
Outbound dep. time: Evening (6:00pm - 11:59pm)
Outbound arr. time: Early morning (0:00am — 4:59am)
Outbound arr. time: Afternoon (12:00pm - 5:59pm)
Outbound arr. time: Evening (6:00pm — 11:59pm)
Inbound dep. time: Early morning (0:00am - 4:59am)
Inbound dep. time: Afternoon (12:00pm - 5:59pm)
Inbound dep. time: Evening (6:00pm — 11:59pm)
Inbound arr. time: Early morning (0:00am - 4:59am)
Inbound arr. time: Afternoon (12:00pm - 5:59pm)
Inbound arr. time: Evening (6:00pm — 11:59pm)

12 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
Contexts

Lower thanmean = _, 0 2 4

App - 26



G.3 Top 50 routes per context: All contexts
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Figure G.3: Top 50 routes per context
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H Model predictive ability

To assess the predictive performance of the model, we focus on predicting whether a transaction
occurs at the end of each (held-out) journey, and if so, which product is chosen. We compare our
model with other established methodologies that have been extensively tested for such predictive
tasks. We evaluate predictive validity of our model on two distinct occasions: immediately after
the customer submits the query (i.e., before any clicks are observed) and once the customer has
clicked on five occasions. These time points (i.e., after query and after clicks) dictate the available

information for making predictions, both for our model and the benchmark modelsF_ZI

H.1 Benchmarks of comparison
We compare our model to two commonly used machine learning classification methods, Random

Forest (RF) and XGBoost. As these benchmarks can only be used to predict outcomes given a set
of features, we create a comprehensive set of features that capture the information available (to
the firm) at each prediction point. In addition to the attributes of the corresponding product, our
set of features includes summary statistics from: (1) the query of the focal journey (capturing the
attributes of the search), (2) the attributes of the products shown in the first page of the focal jour-
ney (capturing the attributes of the products presented to the consumer), (3) the clicks and filters
(during the focal journey) up to the moment when the prediction is made (capturing what the
customer has been clicking), and (4) the queries, product attributes, clicks, filters, and purchases
from past journeys (capturing past behavior). (Please refer to Web Appendix for a detailed
description of the features and the estimation of benchmarks.)

Machine learning classification models are often built for binary tasks. In our case, not only
is the classification not binary, but the choice set size (the number of possible available flights to
choose from) varies from one classification task (journey) to another. To address this complication,
we create a series of binary classifications and use normalization to convert these to a multinomial
choice task. Specifically, we train each benchmark model as a binary predictive model where each
observation represents choosing one product in a particular journey (for each journey, we include
an additional no-purchase “product” for the outside option). Before making predictions, we nor-
malize the prediction scores per customer per journey such that the scores for all alternatives (in
each journey) sum to one. To predict if the customer buys any product or does not buy, we label
it as a purchase if the normalized score for the no-purchase alternative is lower than 0.5. For the
product choice task, we normalize the predictive scores of each product by dividing by the sum of
the scores of all products except the outside option (i.e., choice conditional on purchase) and label
as the chosen product, the product with the highest score. For this evaluation, we only consider

(held-out) journeys that ended up in a purchase, for which we observe the actual product choice.

2When a (held-out) journey has less than 5 clicks occasions, we use all clicks prior to purchase. Doing so not only
provides a more conservative measure of the predictive improvements but also avoids selection biases due to shorter
and longer journeys. Also, results are qualitatively similar when using different numbers of click occasions.
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H.2 Estimation of Benchmark models

We describe in detail how the benchmark models are trained and how the binary prediction scores
are normalized per journey. As both benchmark models are built for binary classification tasks (or
multi-class classification tasks with a fixed set of classes across observations), we create a series
of binary classifications and use normalization to convert these to a multinomial choice task (or
varying choice sizes, depending on the consideration set of each journey).

Consider customer i, in journey j and the set K; that contains the products customer i can
buy in journey j (we also include k£ = 0, an additional “no-purchase product” in this set). We
assemble the set of all observations O = {(i,j,k)| ¢ = 1,...,1, j =1...,J;, k € K;}, where each
observation (“row” in our dataset) represents a product in a journey. We create a single training
dataset using the clickstream data of the entire journey of each customer in the training data to
estimate the benchmark models, which mimic the information seen by the proposed model.

To compute predictions in the test set (i.e., in journeys that have not been observed yet), we
create a dataset that changes as information comes in. When making predictions after 5 steps,
we use all the information in the journey available within the first 5 steps of the journey. To
avoid selection bias and to be able to compare quantities across the different stages of the journey,
we hold constant the set of journeys across the two test conditions: after query and after 5 steps
(columns of Table[d). Specifically, for journeys shorter than 5 steps, we use the entire journey when
making 5-step predictions.

For each observation, we create the binary outcome Yj;;, which equals one if customer i pur-
chased product k during journey j, and zero otherwise (Y;;o = 1 if the customer ends the journey
without a purchase); and a set of features X;;; (“columns” in our dataset) that contain the infor-
mation for each customer, journey, and product. Specifically, we include five types of features in
Xijk:

(1) the set of query variables for journey j (same as those in the query model),

(2) summary statistics of the attributes of all the products shown in the first page of journey j

(same as those in the main model),

(3) the clicks and filters (during the focal journey) up to the moment when the prediction is

made (capturing what the customer has been clicking so far),

(4) the queries, product attributes, clicks, filters, and purchases from past journeys (capturing

the customer’s past behavior), and
(5) the attributes of product k.
We now provide details about each of these sets of variables:

(1) We use the same set of query variables as in the main model. We encode all categorical

variables as binary (leaving one level out to avoid multicollinearity).
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(2)

(4)

)

We use the same set of attributes as in the main model, with the exception that we encode
categorical variables in full one-hot encoding, such that each level in a categorical variable
has a corresponding binary feature. We summarize these features across all products shown
on the first page of journey j, and compute the average, minimum, and maximum shown

on the first page.

We categorize “clicks” in two primary ways. Firstly, at the product level, we represent using
a binary feature whether the focal product k£ has been selected or not. In the training data,
clicks throughout the entire journey are used to formulate this binary feature since the model
undergoes a one-time training. In the test data, this feature is set to one if product k has
been clicked on by that point in the journey. If the product remains unclicked, this feature
corresponds to the percentage of products clicked in the training data; essentially, in the

absence of the feature, we resort to the mean value from the training data.

Secondly, at the journey level, we aggregate the features of all clicked products within the fo-
cal journey, utilizing averages for continuous data and counts for binary data. Mirroring the
process mentioned earlier, the training data summary is computed at the end of the journey,
whereas the test data incorporates information accessible up to that specific step. Further-
more, we document the total count of clicked products within the focal journey. Filters are

integrated in a similar fashion.

We compute the average of variables (1) —(3) plus the attributes of purchased products and
the number of past purchases, across all past journeys of customer <. In the training data, for
focal journey j, these summaries are computed across journeys 1 through j — 1; whereas in
the test data, we use the summary across all journeys of customer ¢ in the training data. We

also include the number of past journeys (such that a non-linear model can recreate counts).

We include the features of product k£ as done in the proposed model, and we use a binary

feature to distinguish between actual products and the No-Purchase product.

In sum, we generated a training dataset of 258,588 observations and 454 features. We train

both binary classifiers, Random Forest (RF) and XGBoost, using a cross-entropy loss function (i.e.,

binary logistic). For the RE, we use honest splitting estimation, where the sample is split in two:

one to construct the trees and another to evaluate the predictions. We use a sample fraction of 0.5,
a number of variable tries per split of 41 (v#features + 20), an honesty fraction of 0.5, and 2000

trees. For XGBoost, we use 100 rounds with a learning rate of 1 and a maximum depth of trees of

4.

After the models are trained, we compute predictions on the test data, pY
First,

ik, in multiple steps.

we normalize the predictive scores from the benchmarks per journey, such that they sum to
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as these binary predictions are generated independently for all observations. Note that this nor-
malization is not needed for the proposed model as the model provides a probability measure
directly. The next steps apply to both benchmark models and our proposed model.

Second, for the incidence predictive task, we label a journey as a purchase if the normalized

score for the no-purchase product is lower than 0.5, that is,

~— . norm

}’}iijncidence -1 {pYijO < 0.5} .

We compute balanced accuracy, precision, and recall from these predicted labels.
Third, for the product choice given purchase predictive task, we first compute choice given

purchase scores per product by

~~norm
—~ choice PY 5k
pY = —~norm
> Y
k'ek(7):k#0

and label the predicted chosen alternative as the product with the maximum score per journey

. —~ choi
nghome = arg max { ngj,S me} .
kek(5)
We use the predicted labels f@;hmce to compute the hit rate (percentage of journeys where predicted
choice equals actual chosen product). In order to provide information on how the model predicts

—~ choice

at the product level (what the models were trained for), we use pY’ to compute balanced ac-

ijk
curacy by labeling as one the product with the highest score and computing the confusion matrix
using the data at the journey-product level. Note that in such case, precision, recall, and balanced
accuracy are all equal, as there is only one chosen product per journey (actual), and only one

product is predicted to be chosen.

H.3 Measures of predictive performance
Due to the predominant occurrence of non-purchase outcomes in the majority of the journeys,

we evaluate predictive ability in purchase incidence based on balanced accuracy (Brodersen et al.
2010) as it provides a more reliable measure of model performance when classes are imbalanced.
It is calculated as the average of sensitivity/recall (true positive rate) and specificity (true negative
rate) and therefore ranges from 0 to 1, where a value of 1 indicates perfect prediction performance.
For product choice given incidence, we report hit rate (proportion of journeys that were correctly

predicted) and balanced accuracy at the product level.
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| Further details on the value of first-party data

Similarly to the analysis presented in Web Appendix H, we compute the choice probabilities for
all models at each stage of the journey. We consistently employ all journeys across all stages,
ensuring a constant set of journeys when conducting comparisons throughout the journey. For
instance, when forecasting after 5 steps (or 2 steps), we consider the initial five (or two) steps for
journeys with at least 5 (or 2) steps, while accommodating all available steps for journeys shorter
than 5 (or 2) steps. This methodology enables us to assess the journey’s value with a conservative
lens, as performance on the held-out set would notably enhance if we were to observe a uniform
5 steps across all journeys.

We compute hit rates at the product level, analogous to the approach described in Section
When exploring the ability of the model to predict what attributes the customer will choose, we
compute the probabilities of choosing each level by aggregating the choice probabilities across all
products with such a level. For categorical variables, we compute hit rates, and for continuous
variables, we utilize the Root Mean Square Error (RMSE).

For example, let us consider a categorical attribute such as number of stops. For each level —
Non-stop, One stop, and 2+ stops— we compute the probability that a customer, conditional on
making a purchase, will opt for a specific stop level. This is done by aggregating the choice proba-
bilities associated with the ‘stop” attribute. For instance, the probability that a customer will select
a non-stop flight corresponds to the cumulative choice probabilities of all non-stop flights. Subse-
quently, the predicted number of stops is identified as the level with the highest choice probability.
We then contrast these predicted labels with the actual labels to compute hit rates, which represent
the proportion of journeys where we accurately predict the number of stops for the chosen flight.
A similar methodology is applied when considering airline alliances, which is also categorical.

For a continuous attribute such as price, we first calculate the square errors between the price
of each alternative and the price of the purchased alternative, and then compute the weighted

average of those square errors (by journey) using the purchase probabilities as weights, by

MSEZPjrice = Z p(y;; = k|Datayjq) - (Price;jx, — Priceijk*)Q,
kek(3)

where p(yfj = k|Data;j;) are the purchase probabilities and k* is the true purchased alternative.
First, note that the square errors are independent from the predictions, but the weighted average
is not. Second, note that if the model predicts with probability one on alternatives with the same
price as the purchased one, then this expectation is zero. Finally, we average those expected square

errors and compute the square root

. 1 .
P _ P
RMSEPrice = \/ oy O MSEJFe,
ij
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where J°°° is the number of held-out journeys. We follow the same procedure for the length of the
trip. We compute these scores on the normalized prices and lengths to weigh all journeys equally

and to avoid searches with more expensive and longer destinations to dominate the score.

J Further details on the retargeting analysis

We simulate outcomes for a single ad impression of a retargeted ad for each customer where we
vary the product featured in the impression. For each journey with a minimum of two clicks in
the holdout sample, we select a product to be displayed in a single ad impression. Using our
model and the data up to the current step in the journey, we use the posterior inferences on 3;; to
compute the posterior expected utility for each product in the journey and select the product with
the maximum expected utility. We compare this product chosen against two benchmarks. First,
we select the product that is expected to be the most popular a priori, without any clickstream
and personalized data. Since product availability is quite sparse across journeys as a specific
product is unlikely to appear across multiple journeys, we use the population average preferences
from the Only purchase model estimated in Section 5, and compute expected utility under the
population preferences to choose the product with highest expected utility across the population.
Second, we select the product that has been clicked last on each journey. In those journeys where
no product has been clicked on we select the most popular product described in the previous
benchmark.

For each retargeting ad, we simulate click-through-rates using the estimates of a model with
full information of the journey, that is, those using all data from those journeys, including clicks
after the second step and purchases (which has different estimates than those used for setting the

policy). We simulate each ad impression click occasion as a univariate probit model with utilities
ufj(k*) =3 4 fj'xijk* + €55

where k* is the chosen product for each retargeting method, 3°" is a retargeting ad intercept and

er; ~ N(0, 0?2) is the unobserved component of utility. Since both the intercept 4" and the error

2

term variance o

are not parameters in our model, we set them to different values. The intercept
B is set such that the mean CTR across all products and journeys for a retargeted ad equals
2% across journeys (the average retargeting CTR without content personalization reported in the
industry is 0.7% (Signifi Media|2020), and highly personalized ads have 3x higher CTRs compared
to non-personalized ads (Bleier and Eisenbeiss|2015)). We set the variance of the error term to
02 = 1.25 and vary it for robustness.

We show in Table[J.7]the predicted CTR across retargeting methods to choose the personalized
product and choices of 2. We note that even though the base CTR is sensitive to the choice of o2,

the relative improvement is robust.
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Table J.7: Retargeting: Predicted CTR when the firm utilizes insights from the model to formulate a
retargeting offer. The baseline models presume that the retargeting offer features the product that was

most recently clicked or the most popular product.

Click-through rates

Model

0=100 o0=125 o =150
Baseline 1 (Most popular) 0.108 0.054 0.027
Baseline 2 (Last clicked) 0.111 0.056 0.028

% increase vs. most popular +3.05% +3.65% +3.93%

Highest preference based on our model ~ 0.143 0.074 0.037
+31.94% +36.27% +39.16%

+28.04% +31.47% +33.90%

% increase vs. most popular

% increase vs. last clicked
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