
WEB APPENDIX

The Customer Journey as a Source of Information

These materials have been supplied by the authors to aid in the understanding of their paper.

A Specification of model components

The model is informed by four types of behaviors: queries (qij), clicks (ycijt), filters (fij), and pur-

chases (ypij).

A.1 Query

We leverage the information in the search query through multiple query variables that capture the

context of a journey. These variables help capture journey-specific needs, even for different jour-

neys of the same customer. For example, day-of-the-week and time-of-the-day may be relevant to

infer whether a search query in a food delivery platform relates to a single-person weekday lunch

vs. a romantic Friday night dinner. In a travel setting, the number of passengers, dates of travel,

and destination, among others, can be informative about the context for what the user might be

looking for.

We denote by qij the vector of query variables that describe journey j for customer i,

qij “

”

qij1 . . . qijM

ı1

,

where each component indexed by m P t1, . . . ,Mu describes a different type of query variable

(e.g., length of the stay, traveling with kids). Because these pieces of information are provided

by the customer to obtain a set of product results that match their preferences, we treat each

query variable as an outcome that depends on some unobserved component that captures the

customer’s true need in the focal journey.1 We model qij as a function of a vector of parameters

ωj “

”

ωj1 . . . ωjM

ı1

.

We assume that given ωj , the components of qij are conditionally independent, that is:

ppqij |ωjq “

M
ź

m“1

ppqijm|ωjmq. (1)

1Potentially, customers could slightly modify the query along the journey while searching for a product to satisfy
the same need (e.g., changing the departing date when customers search for flight tickets). We model only the first
query by a customer in each journey due to the minimal additional information these often provide. That being said,
the model can easily be extended to learn from multiple query instances.
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Each type of query variable m could be of multiple types: (1) binary, (2) categorical, (3) continuous

real-valued, or (4) continuous positive-valued. We flexibly model qijm using a different distribu-

tion pmpqijm|ωjmq for each type of variable m,

qijm „

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Bernoullipωjmq if qijm is binary

Categoricalpωjmq if qijm is categorical

exppωjmq if qijm is continuous positive-valued

N pωjm, σ2
mq if qijm is continuous,

(2)

where each parameter ωjm has the appropriate support given the distribution it governs.2 Our

model can accommodate other distributions such as Poisson or Binomial for count variables, and

Student’s t-distribution or Cauchy for long-tailed continuous variables.

A.2 Joint model of clicks and purchase

We structure the modeling of clicks and purchase decisions in two phases. First, customers ex-

plore products through clicks and potential filtering to form a consideration set. Next, customers

proceed to the purchase decision stage, where they either choose an item from their considered

set or decide not to make a purchase. All of these decisions are guided by a shared set of customer

preferences, denoted as βij .

Click decisions Along the journey, the customer clicks through pages of product results. The

customer can navigate back and forth between clicking on products and refining their searches. In

each step, the customer decides among: (1) clicking on one of the products shown on the page to

consider it for purchase, (2) continuing to search to receive a new set of results (e.g., by adjusting

the query or filtering the results), or (3) ending the search and moving to the purchase decision

among those considered.

We model the click decision of alternative k at step t of the journey using a discrete choice

model. We define Pageijt as the set of products displayed to customer i in journey j at step t.

The customer faces a decision between: clicking on one of the displayed products k P Pageijt,

continue searching to get a new set of products (k “ s), or finish the search process and move to the

purchase decision (k “ e), which could mean either purchasing a considered product or deciding

not to buy. We denote the choice consumer i makes at step t of journey j by ycijt P Pageijt Y ts, eu,

2We choose to define σm fixed across all journeys, to avoid the issue of singularity. That is analogous to approaches
that prevent regularity issues commonly found when estimating Gaussian mixtures with component-specific variances
(Bishop 2006). These issues emerge when the mean of one of the Gaussian components is equal to a single data point,
which leads to a term contributing to the model likelihood that grows to infinity as the variance of such component
goes to zero.
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which we model using a multinomial probit specification with latent propensities ucijtk, such that

ycijt “ argmax
kPPageijtYts,eu

␣

ucijtk
(

, with

ucijtk “

$

’

’

’

&

’

’

’

%

β0c
ij ` xc

ijtk
1 ¨ βx

ij ` log-rankijtk ¨ η ` εijtk if k P Pageijt,

β0s
ij ` εijts if k “ s,

β0e
ij ` εijte if k “ e,

(3)

where εijtk ´ εijte „ N p0, σ2q, xc
ijtk is the vector of attributes of product k, βx

ij is the vector of

customer- and journey-specific product-attribute preferences, β0c
ij is the intercept for clicking on

a product, βs
ij is the intercept for the decision to continue searching, and β0e

ij is the intercept for

finishing the search process, normalized to 0 for identification purposes. Note that by definition,

customers stop searching in the last observed step and move to the purchase decision (i.e., ycijTij
“

e).

We control for ranking effects on search (Ursu 2018) by incorporating the log of the position

of product k within the results page into the search in ucijtk and using η to capture such ranking

effects.3 Such a term also captures search costs within a page, along with the intercepts in (3)

that capture users’ propensity to keep searching and are related to search costs across pages. We

denote the vector of product-attributes xc
ijtk to be t-specific to allow for a subset of all attributes

xijk to be shown differently in different types of pages. For example, while customers observe all

attributes at the moment of purchase, they may not observe all of them on certain pages while

searching. Similarly, the observability of certain attributes may even differ among different types

of pages (e.g., departing and returning results pages for flights in online travel). For example, the

attributes of the return leg of a flight are not shown when customers choose the first leg of the

flight, so they drop from the choice model.

Filter decisions Websites and apps usually collect other types of interactions — e.g., whether a

user filters results based on some attributes — information that can be used to further inform about

customer preferences in that particular journey. Unlike clicks, filters are not frequently observed

in the data — many journeys do not have filters, and when they do, they generally occur only once

along the entire journey. We avoid computational burden by modeling the filtering decision at the

overall journey level (rather than at the step level t); that is, we model whether the customer uses

a particular filter at any time during the journey.

We denote by ℓ P t1, . . . , Liju the level customer i in journey j can filter on and define fij to be

the vector of summarized filter decisions for customer i in journey j,

fij “

”

fij1 . . . fijLij

ı1

,

3Following Ursu (2018), we include the log-position rank in the click decision but not in the purchase-given-clicks
decision.
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where each component fijℓ is defined by

fijℓ “

$

&

%

1 if customer i filters on level ℓ within journey j

0 otherwise.

We model each component fij using a binary probit specification such that

fijℓ „ Bernoulli
´

Φ
´

α0
ℓ ` wijℓ

1 ¨ αw
ℓ ` βx

ij
1
¨ αβ

ℓ

¯¯

, (4)

where α0
ℓ is the intercept of filtering on level ℓ, βx

ij is the same set of preferences that drive clicks

and purchases, and αβ
ℓ is the vector that relates those preferences to the filtering decision. It is this

term that allows the model to learn preferences for attributes by fusing filtering decisions about

those attributes. To control for other factors that may affect the filtering decisions (e.g., the overall

characteristics of unfiltered results), we include wijℓ capturing a set of controls that summarize

the set of (unfiltered) results. In particular, we control in wijℓ for the number of total products, the

percentage of products with level ℓ, and the number of top 5 products with level ℓ in the unfiltered

results.4

Purchase given consideration After clicking and possibly filtering through product results, cus-

tomers make the purchase decision. We model this as a discrete choice among the alternatives

in a consideration set Cij . Specifically, we define the consideration set as the set of products that

have been clicked on at least once during the course of the journey, plus the outside option of not

purchasing

Cij “
␣

k : k P Pageijt, y
c
ijt “ k, t P t1, . . . , Tiju

(

. (5)

We model the purchase decision using a multinomial probit specification with latent propen-

sities upijk. That is,

ypij “ argmax
kPCijYtNoPurchaseu

!

upijk

)

, where

upijk “

$

&

%

β0p
ij ` xijk

1 ¨ βx
ij ` ϵijk if k P Cij

β0o
ij ` ϵijo if k “ NoPurchase,

(6)

with ϵijk ´ ϵijo „ N p0, σ2
pq, and where xijk is the vector of attributes of product k, βx

ij is the same

vector of customer- and journey-specific product-attribute preferences from (3), β0p
ij is the intercept

for purchasing a product, and β0o
ij is the intercept for not buying, normalized to 0 for identification

purposes.

4As journeys may contain multiple unfiltered results due to multi-session journeys, we average these controls
across the unfiltered results pages of all sessions within a journey.
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Finally, we define

βij “

´

β0c
ij , β

0s
ij , β

0p
ij , β

x
ij

1
¯1

, (7)

as the vector of all clicks and purchase preferences.

B Model priors

B.1 Distributions

We detail the specification of the prior distribution for the model parameters.

First, for the population covariance matrix Σ that governs customer heterogeneity in (7), we

choose the standard Wishart prior for the precision matrix Σ´1,

Σ´1 „ Wishartpr0, R0q.

Second, we put priors on the Pitman-Yor process discount and strength parameters, d and a,5

respectively by

d „ Betapϕd
0, ϕ

d
1q

a „ Gammapϕa
0, ϕ

a
1q.

Third, we put priors on the location parameters θc by defining the base distribution of the

Pitman-Yor process, F0. As described in (11), the location parameters are drawn from θc „ F0pϕ0q.

Following the notation in (8), consider θω and θρ as the components of θ that correspond to query

parameters ωj and click-purchase parameters ρj , respectively. We define F0 as a multivariate

distribution factorized by each of the components of θ, defined by

F0pθ|ϕ0q “

˜

M
ź

m“1

Fω
0mpθωm|ϕ0mq

¸

ˆ N pθρ|µ0, V0q,

where we assume Gaussian priors for the location parameter of click and purchase preferences,

and F q
0m is defined accordingly to the support of the parameter that governs the distribution of

each query variable m described in (2). That is,

Fω
0mpθωm|ϕ0mq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

Betapϕ0ma, ϕ0mbq if qijm is binary

Dirichletpϕ0mq if qijm is categorical

Gammapϕ0ma, ϕ0mbq if qijm is continuous positive-valued

N pϕ0mµ, ϕ0mσq if qijm is continuous.

5We restrict the model to a ą 0.
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Finally, we put mean-zero Gaussian priors on all other parameters in the model including η in

(3), and α0
ℓ , αw

ℓ and αβ
ℓ in (4)

η „ N p0, s2ηq

α0 „ N p0, Sα,0q

αw
ℓ „ N p0, Sα,wq, @ℓ

αβ
ℓ „ N p0, Sα,βq, @ℓ

We use the following hyperparameters for the model priors. For the Wishart priors, we use

r0 “ nβ ` 5 and R0 “ 1
r0´nβ`1 ¨ Inβ

, where nβ is the dimensionality of βij . For the Pitman-Yor

discount and strength priors we use ϕd
0 “ 0.5, ϕd

1 “ 5.0, ϕa
0 “ 1.0, and ϕa

1 “ 0.1. For the Pitman-Yor

base distribution we use the following hyperparameters: (a) ϕ0ma “ ϕ0mb “ 2 for Beta; (b) ϕ0m “ 1

for Dirichlet, (c) ϕ0ma “ ϕ0mb “ 2 for Gamma; ϕ0mµ “ 0 and ϕ2
0mσ “ 100 for Gaussian; and (d)

µ0 “ 0 and V ´1
0 “ 104 for θρ. For the position effect priors, we use s2η “ 25. Finally, for the priors

governing the filter component, we use S´1
α,0 “ 1

25 ¨ I, S´1
α,ω “ 1

25 ¨ I, and S´1
α,β “ 2.5 ¨ I.

C Blocked-Gibbs sampler algorithm

Our Metropolis-within-Gibbs MCMC sampling algorithm is based on Ishwaran and James (2001)

approximation using the stick-breaking representation of the Pitman-Yor (PY) Process, truncat-

ing the infinite mixture by setting VC “ 1 for a large enough integer C. This approximation

allows us to draw context memberships of different journeys in parallel, significantly increasing

our sampling scheme’s speed. We use adaptive Metropolis-Hastings (M-H) steps to update the

PY parameters d and a as these full conditionals do not have a closed form (a has closed form only

if d “ 0). We use Gibbs steps for all other parameters as their full conditionals have closed form.

Similarly to the click and purchase components, we use data augmentation for the filter decisions

and define ufijℓ “ α0
ℓ ` wijℓ

1 ¨ αw
ℓ ` βx

ij
1 ¨ αβ

ℓ ` εfijℓ, such that εfijℓ „ N p0, 1q and fijℓ “ 1pufijℓ ą 0q.

We sequentially update the parameters by,

1. Draw latent click utilities for alternative k P Pageijt Y tsu using a truncated Gaussian by,

ucijtk „

$

’

’

’

’

&

’

’

’

’

%

Truncated- N
´

sucijtk, 1, lower “ ´8,upper “ 0
¯

if ycijt “ e

Truncated- N
´

sucijtk, 1, lower “ maxtucijt´k, 0u,upper “ 8

¯

if ypij “ k

Truncated- N
´

sucijtk, 1, lower “ ´8,upper “ maxtucijt´ku

¯

otherwise,

where sucijtk “ β0c
ij ` xc

ijtk
1 ¨ βx

ij ` log-rankijtk ¨ η if k P Pageijt, and sucijtk “ β0s
ij if k “ s.
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2. Draw latent purchase utilities by,

upijk „

$

’

’

’

’

&

’

’

’

’

%

Truncated- N
´

supijk, 1, lower “ ´8,upper “ 0
¯

if ypij “ NoPurchase

Truncated- N
´

supijk, 1, lower “ maxtupij´k, 0u,upper “ 8

¯

if ypij “ k

Truncated- N
´

supijk, 1, lower “ ´8,upper “ maxtupij´ku

¯

otherwise,

where supijk “ β0p
ij ` xijk

1 ¨ βx
ij .

3. Draw latent filter utilities by,

ufijℓ „

$

&

%

Truncated- N
´

α0
ℓ ` wijℓ

1 ¨ αw
ℓ ` βx

ij
1 ¨ αβ

ℓ , 1, lower “ ´8,upper “ 0
¯

if fijℓ “ 0

Truncated- N
´

α0
ℓ ` wijℓ

1 ¨ αw
ℓ ` βx

ij
1 ¨ αβ

ℓ , 1, lower “ 0,upper “ 8

¯

if fijℓ “ 1.

4. Draw individual-level stable preferences µi. We define a vector of click, purchase, and filter

latent utilities for journey j,

ruij “

»

—

—

—

–

”

ucijtk ´ log-rankijtk ¨ η
ı

tk”

upijk

ı

k”

ufijℓ ´ α0
ℓ ´ wijℓ

1 ¨ αw
ℓ

ı

ℓ

fi

ffi

ffi

ffi

fl

J

,

and rXij the corresponding “stacked” matrix of vectors multiplying βij in equations (3), (4),

and (6). That is,

rXij “

»

—

—

–

rXc
ij

rXp
ij

rAf
ij

fi

ffi

ffi

fl

,

where rXc
ij is the matrix of stacked click covariates. Specifically,

rXc
ij “

»

—

—

—

—

—

—

—

—

–

rXc
ij1
...

rXc
ijt
...

rXc
ijTij

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

and rXc
ijt “

»

—

—

—

—

—

—

—

—

—

—

–

0 1 0 0

1 0 0 xc
ijt1

1

...
...

...
...

1 0 0 xc
ijtk

1

...
...

...
...

1 0 0 xc
ijtKijt

1

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.
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Similarly, rXp
ij is the matrix of stacked purchased covariates,

rXp
ij “

»

—

—

—

—

—

—

—

—

–

0 0 1 xij1
1

...
...

...
...

0 0 1 xijk
1

...
...

...
...

0 0 1 xijtKij
1,

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and rAf
ij “

”

αβ
1 . . .α

β
ℓ . . .α

β
Lij

ı1

.

The columns of each of these matrices multiply βij “

´

β0c
ij , β

0s
ij , β

0p
ij , β

x
ij

1
¯1

, respectively;

which yields the terms in (3), (18), and (6).

We further define rXi as

rXi “

»

—

—

—

—

—

—

—

—

–

rXi1

...
rXij

...
rXiJi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

,

and rui as

rui “

»

—

—

—

—

—

—

—

—

–

rui1 ´ rXi1 ¨ ρ1

...

ruij ´ rXij ¨ ρj

...

ruiJi ´ rXiJi ¨ ρJi

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

.

Finally, we draw µi „ N prµi, rSiq where

rS´1
i “ Σ´1 ` rX1

i
rXi

rµi “ rSi

´

Σ´1 ¨ 0 ` rX1
irui

¯

.

5. Draw context membership zj as follows

ppzj “ c|¨q “
πcPjc

C
ř

c1“1

πc1Pjc1

,
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where Pjc “

´

śM
m“1 ppqijm|θωcmq

¯

¨ p
´

ruij ´ rXijµi|rXijθ
ρ
j , 1

¯

, with ppqijm|θωcmq denoting the

pdf of query variables as defined in (2), and p
´

ruij ´ rXij ¨ µi|rXij ¨ θρj , 1
¯

denoting the prod-

uct of elementwise normal pdf evaluated at each components of ruij ´ rXij ¨ µi with mean
rXij ¨ θρj and variance 1.

6. Draw the query components of context location parameters θωc for each context c. We denote

J pcq as the set of journeys j and nc “ |J pcq| as the number of journeys such that zj “ c. For

each query variable m, we draw θωcm depending on the type of query variable modeled in

(2). Specifically,

θωcm „

$

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

%

Beta

˜

ϕ0ma `
ř

jPJ pcq

qijm, ϕ0mb ` nc ´
ř

jPJ pcq qijm

¸

if qijm is binary

Dirichlet
´

ϕ0m ` rnqcm1, . . . , nqcmNms
J
¯

if qijm is categorical

Gamma

˜

ϕ0ma ` nc, ϕ0mb `
ř

jPJ pcq

qijm

¸

if qijm is continuous positive-valued

N pµ̃cm, s̃cmq if qijm is continuous,

where nqcmn “
ř

jPJ pcq 1pqijm “ nq, s̃´1
cm “

“

ϕ´1
0mσ ` σ´2

m

‰

and µ̃cm “ s̃cm
ř

jPJ pcq qijm.

7. Draw the click-purchase context location parameters θρ. We define sXc and suc as

sXc “

„

”

rXipjqj

ı

jPJ pcq

ȷ

, and suc “

„

”

ruipjqj ´ rXipjqj ¨ µipjq

ı

jPJ pcq

ȷ

,

where ipjq denotes the customer to whom journey j belongs to.

We draw θρc „ N psµc, sScq, where

sS´1
c “ V ´1

0 ` sX1
c
sXc

sµc “ sSc

`

V ´1
0 ¨ µ0 ` sX1

csuc

˘

.

8. Draw ranking effect η. Defining r as the vector of all log-rankijtk values, and the vector of

differences in click utilities ur “

”

tucijtk ´ β0c
ij ` xc

ijtk
1 ¨ βx

ijuijtk

ı

, we draw η by

η „ N psµη, ss
2
ηq,
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where

ss´1
η “ s´1

η ` r1r

sµη “ ssη
`

s´1
η ¨ 0 ` r1ur˘ .

9. Draw α0. We define ruf
0 as the vector of residual filter utilities where each component is an

observation pi, j, ℓq defined as

ruf0ijℓ “ ufijℓ ´ wijℓ
1 ¨ αw

ℓ ´ βx
ij

1
¨ αβ

ℓ .

We also define a binary matrix that multiplies the vector of intercepts α0 to yield the re-

spective level for each observation. In other words, this matrix encodes in binary variables

the level ℓ to which the observation (row) belongs, such that the entry in each row that

represents the observation pi, j, ℓq takes the value one for column ℓ, and zero for all others.

Consequently, we draw α0 by

α0 „ N psµα,0, sSα,0q,

where

sS´1
α,0 “ S´1

α,0 ` rw1
0 rw0

sµα,0 “ sSα,0

´

S´1
α,0 ¨ 0 ` rw1

0ru
f
0

¯

.

10. Draw αw
ℓ . We define ruf

w,ℓ “

”

tufijℓ ´ α0
ℓ ´ βx

ij
1 ¨ αβ

ℓ uij

ı

as the vector of residual filter utilities,

and Wℓ “

”

tw1
ijℓuij

ı

the matrix of filter controls for level ℓ, and draw αw
ℓ by

αw
ℓ „ N psµw

ℓ ,
sSα,w,ℓq,

where

sS´1
α,w,ℓ “ S´1

α,w ` W1
ℓWℓ

sµw
ℓ “ sSα,w,ℓ

´

S´1
α,w ¨ 0 ` W1

ℓru
f
w,ℓ

¯

.

11. Draw αβ
ℓ . We define rub

w,ℓ “

”

tufijℓ ´ α0
ℓ ´ w1

ijℓ ¨ αw
ℓ uij

ı

as the vector of residual filter utilities,

and Bℓ “

”

tβ1
ijuij

ı

as the matrix of preferences, where each row of the matrix contains the

vector of preferences corresponding to the respective row in rub
w,ℓ. Draw αβ

ℓ by

αβ
ℓ „ N psµβ

ℓ ,
sSα,β,ℓq,
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where

sS´1
α,β,ℓ “ S´1

α,β ` B1
ℓBℓ

sµβ
ℓ “ sSα,β,ℓ

´

S´1
α,β ¨ 0 ` B1

ℓru
b
w,ℓ

¯

.

12. (M-H step) Draw a proposal aprop „ pa´propp¨|aq. Update a “ aprop with probability

αpa, apropq “ min

#

1,
Gamma paprop|ϕa

0, ϕ
a
1q

Gamma pa|ϕa
0, ϕ

a
1q

¨

śC´1
c“1 Beta pVc|1 ´ d , aprop ` c ¨ dq
śC´1

c“1 Beta pVc|1 ´ d , a ` c ¨ dq
¨
pa´proppa|apropq

pa´proppaprop|aq

+

.

We use a log-normal pa´propp¨|aq “ logN plogpaq, τ2nq, where we use a vanishing adapta-

tion procedure (Atchadé and Rosenthal 2005) to adapt the proposal step size to target an

acceptance rate of 0.44 (Gelman et al. 1995) through

τ2n “

$

&

%

τ20 n ď 200,

|τ2n´1 ` ϵ
npapn ´ 0.44q| n ą 200,

where apn is the empirical acceptance rate up to iteration n. Note the proposal distribution

is not symmetric and yields a ratio pa´proppa|apropq

pa´proppaprop|aq
“ aprop

a .

13. (M-H step) Draw a proposal dprop „ pd´propp¨|dq. Update d “ dprop with probability

αpd, dpropq “ min

#

1,
Beta

`

dprop|ϕd
0, ϕ

d
1

˘

Beta
`

d|ϕd
0, ϕ

d
1

˘ ¨

śC´1
c“1 Beta pVc|1 ´ dprop , a ` c ¨ dpropq
śC´1

c“1 Beta pVc|1 ´ d , a ` c ¨ dq
¨
1{pd´proppdprop|dq

1{pd´proppd|dpropq

+

.

We use a logit-normal proposal distribution pd´propp¨|dq “ logit´N plogitpdq, s2nq, where the

logit function is defined by logitpdq “ log
´

d
1´d

¯

, and the logit-normal pdf is defined by

logit´N px|µ, σ2q “ 1
σ

?
2π

1
xp1´xq

exp
!

´
plogitpxq´µq2

2σ2

)

. We adapt s2n analogously to τ2n in the

previous step.

14. Draw context probabilities πc, by drawing the stick parameters Vc from

Vc „ Beta

˜

1 ´ d ` nc , a ` c ¨ d `

C
ÿ

c1“c`1

nc1

¸

,

and compute πc according to (12).

15. Draw population covariance matrix Σ, by

Σ´1 „ Wishartpr1, R1q,
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where

r1 “ r0 ` I

R1
´1 “ R0

´1 `
ÿ

i

µi ¨ µi
1
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D Posterior distribution of holdout journey preferences

We outline the procedure to update the posterior distribution of preferences for holdout journeys,

given data on the focal journey and past journeys. (This corresponds to the right-hand side of

(14)). There are several relevant considerations for this procedure.

First, we leverage the Pitman-Yor process when making inferences on new journeys, by al-

lowing for a previously unobserved context to be discovered in this focal journey. Second, as the

posterior of global parameters is obtained with a large number of journeys in the training sample,

we approximate the posterior of these parameters given all training data plus focal journey j, by

the posterior without focal journey j. That is, the inference on global parameters remains largely

unchanged by the addition of a single journey (except for discovering a context that has not been

observed before, as mentioned above). This assumption allows us to maintain computational ef-

ficiency by not re-estimating the whole model when updating the inference on current journey

preferences as new data arrives. Third, as commented in Section 2.4, the context of past journeys

is conditionally dependent on the focal journey given past and current journey data, because sta-

ble preferences and contexts both jointly determine the outcomes in both journeys. Therefore, in

the process of drawing preferences for new journeys, we update the inferences for past journeys

of the focal customer as well.

For each customer i, we denote the focal (holdout) journey by j, with j1 referring to journeys

different from the focal one. The set of past journeys (not including j) is denoted by J piq, the

vector of contexts of all past journeys by zi,´j “ tzij1uj1PJ piq, the entire journey data for a journey

j1 by Hi,j1 “ tqij1 , ycij11:Tj1
, fij11:L, y

p
ij1u, the collection of past journey data by Hi “

Ť

j1PJ piq

Hi,j1 , the

set of global parameters by Φ,6 and all training data by D.

We update the posterior of preferences for focal journey j, βij , by

ppβij |qij , y
c
ij1:t,Lijt,Hi,Dq “

ż

ppβij |qij , y
c
ij1:t,Lijt,Hi,Φq ¨ ppΦ|D,qij , y

c
ij1:t,LijtqdΦ

«

ż

ppβij |qij , y
c
ij1:t,Lijt,Hi,Φq ¨ ppΦ|DqdΦ, (8)

where ppΦ|Dq is the posterior distribution of the global parameters given the training data. We

expand the left term in (8), by drawing customer stable preferences, context-specific parameters,

focal context membership, and past journeys contexts and marginalizing them,

ppβij |qij ,y
c
ij1:t,Lijt,Hi,Φq “
ż

ppβij ,µi,γj ,γ´j , zij , zi,´j |qij , y
c
ij1:t,Lijt,Hi,Φq ¨ dµi ¨ dγj ¨ dγ´j ¨ dzij ¨ dzi,´j , (9)

6Note that the global parameters are Φ “

”

Σ, η, a, d, tπc, θcu
C
c“1, tα0

ℓ ,α
w
ℓ ,α

β
ℓ uℓPt1,...,Lu

ı

.
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where γ´j “ tγj1uj1PJ piq. Finally, noting that γj “

˜

ωj

ρj

¸

we can write this posterior as being

proportional to the joint density

ppβij ,µi,γj ,γ´j , zij , zi,´j |qij , y
c
ij1:t,Lijt,Hi,Φq

9 ppβij ,µi,γj ,γ´j , zij , zi,´j ,qij , y
c
ij1:t,Lijt,Hi|,Φq

“ ppqij |ωjq ¨ ppycij1:t|µi,ρj , ηq ¨ ppLijt|µi,ρj ,α
0,αw,αβq ¨ 1tβij “ µi ` ρju

¨
ź

j1PJ piq

ppHij1 |µi,γ´j ,Φq

¨ ppµi|Σq ¨ p
´

zij ,γj |a, d, tπc, θcu
rC
c“1

¯

¨
ź

j1PJ piq

p
´

zij1 ,γj1 |a, d, tπc, θcu
rC
c“1

¯

, (10)

where rC is the number of contexts (which is a latent variable, and thus, it is drawn from the

posterior ppΦ|Dq).

We update those parameters using steps 1, 2, 3, and 4 exactly as shown in Web Appendix C,

and we adapt steps 5, 6, and 7 (and add step 8) to allow for previously unobserved contexts to be

drawn by:

5˚. Draw context membership zj P t1 . . . rCu Y t rC ` 1u as follows

ppzj “ c|¨q9

$

&

%

pnc ´ dq ¨ Pjc, if c ď rC

pa ` d ¨ rCq ¨ P˚
j if c “ rC ` 1

where Pjc as defined in step 5 in Web Appendix C, and

P˚
j “

˜

M
ź

m“1

ppqijm|ϕ0mq

¸

¨ p
´

ruij ´ rXijµi|rXij , µ0, V0

¯

the product of posterior predictive likelihoods7 such that

ppqijm|ϕ0mq “

ż

ppqijm|θwmq ¨ ppθwm|ϕ0mqdθwm

p
´

ruij ´ rXijµi|rXij , µ0, V0

¯

“

ż

p
´

ruij ´ rXijµi|rXijθ
ρ
j

¯

N pθρ|µ, V0qdθρ.

6˚. If zij “ rC ` 1, then draw the query components of context location parameters θω
rC`1

follow-

ing step 6 in Web Appendix C.

7˚. If zij “ rC ` 1, then draw the click-purchase context location parameters θρ
rC`1

following step

7 in Web Appendix C.

7As all prior-likelihood pairs are conditionally conjugate, these posterior predictive likelihoods have closed form.

App - 14



8˚: If zij “ rC ` 1, then update rC “ rC ` 1, and repeat the same steps for all j1 P J pcq.
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E Details on predicting future activity for unfinished journeys

E.1 Approximation of consideration probabilities (XGBoost)

To compute the second term in (15), consider the probability that a product k belongs to the con-

sideration set at the end of the journey (i.e., right before purchase) given the clicks observed up

to step t, and given preferences βij inferred before then, i.e., ppk P Cij |ycij1:t,βijq. If the product

has been clicked before step t, the probability of it being considered is one. If the product has not

been clicked before t, the probability of it being considered afterwards involves an infinite sum

because we do not know how many more steps the journey will have. Theoretically, one could

build a forward-looking search model to estimate the consideration set probabilities. Given how

non-linear our journeys are and the large number of possible items to query, filter, and click on,

such a model would be intractable. Additionally, in order to use our model to simulate future

clicks and choices we would need to observe hypothetical choice sets that depend on the path

being simulated. These choice sets are observed during training, but unobserved for journeys that

are incomplete. Since customers can visit the website across multiple sessions within the same

purchase journey, simulating choices also involves defining a process for drawing choice sets. For

example, consider making after-query predictions on a journey that lasted a single step. When

simulating choices, there is no data about what products may be available after the first step,

especially if the simulated journey takes multiple steps.

To make such a forecast tractable and scalable, we approximate this probability by imputing

the predictions from a flexible (reduced-form) model that, leveraging finished journeys in the

training data, estimates the probability that a product will be added to the consideration set.

Specifically, we infer consideration given product characteristics xijk and preferences βij through

a reduced-form predictor function ĝCpx,βq such that,

ppk P Cij |ycij1:t,βijq «

$

&

%

1 if clicked on before, i.e., Dt1 ď t, ycijt1 “ k,

ĝCpxijk, βijq „ .
(11)

Such a prediction function can be estimated using standard machine learning (ML) models

trained using all displayed products in finished journeys of the training data, for which we pre-

cisely observe whether each product was added to the consideration set. In our application, we

use a binary XGBoost model to estimate the function ĝCpx,βq. As features for the XGBoost model,

we use the exact observed product attributes used in the purchase model (xijk) as well as draws

from the posterior distribution of (individual-level) customer preferences (βij), obtained from the

main model when estimated using the same journeys in the training data. Note that adding cus-

tomer preferences as features enriches the ML model predictions as those capture the unobserved

individual-level preferences.
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In our empirical application, consideration is operationalized slightly differently for the two

types of flights: one-way and roundtrip. For one-way itineraries, the details page is shown after

a single click on a one-way results page, the moment at which we assume the flight is being con-

sidered. For roundtrip itineraries, on the other hand, the customer must click on the outbound

component of the flight (on an outbound results page), and on the inbound (return) component of

the flight in order to see the details page and for the product to be considered. Accordingly, we

train three different models, each aiming at a different prediction task: One that predicts consid-

eration for one-way flights (ĝow), another one that predicts whether the outbound component of

a roundtrip flight is considered (ĝout), and another one that predicts, conditional on the outbound

component being considered, whether the inbound component is also considered (ĝin).

Following (11), we compute the consideration probabilities given whether the customer has

clicked on the itinerary, or a portion of the itinerary. That is,

ppk P Cij |One-way, ycij1:t,βijq «

$

&

%

1 if flight was clicked on before

ĝowpxijk, βijq if flight has not been clicked on yet,

ppk P Cij |Roundtrip, ycij1:t,βijq «

$

’

’

’

&

’

’

’

%

1 if both legs were clicked on

1 ¨ ĝinpxijk, βijq if only outbound leg was clicked on

ĝoutpxijk, βijq ¨ ĝinpxijk, βijq if no leg has been clicked on.

We estimate tree-based classifiers (XGBoost and Random Forest) to predict consideration in

hold out journeys. We train such models using the data from the training sample (including

clicks as the dependent variable and the product attributes as features) as well as draws from

the posterior distribution of the vector of preferences (which are included as additional features

in our classifier).

Because the parameters βij are estimated in a Bayesian manner (i.e., we don’t have a point

estimate but a posterior distribution), we draw a sample of 50 draws from the posterior distribu-

tion of βij when training the consideration of each journey. Specifically, for each product k in a

journey, we create 50 observations, each with a feature vector concatenating the vector of prod-

uct attributes, xijk, and the drawn preferences rβijd. We sample 1,000,000 observations („1% of

total) to train the classifiers. We use one-way observations to train ĝow; and roundtrip observa-

tions to train ĝout. To train ĝin, we only use roundtrip observations such that the outbound leg

of the corresponding itinerary was clicked on.8 We use as binary outcomes whether the corre-

8Arguably, there could be selection bias affecting our sample as we would make predictions for those products not
clicked on yet based only on those clicked on the outbound leg. However, we argue that this approach is the most
sensible given the task at hand. First, any potential selection bias should hurt the out-of-sample performance, and,
thus, be captured by the out-of-sample performance of the predictions of the whole model. Second, those predictions
should only be relevant for products that had their outbound leg clicked on, or that the outbound model predicts will
be clicked on. Therefore, even if predictions are off for products that are unlikely to be clicked on, they are already
captured by pgout.
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sponding product of each observation was clicked on during the journey,9 and the corresponding

cross-entropy loss (i.e., binary logistic) to train the models.

Table E.2: Performance of XGBoost consideration predictors.

Consideration

Model Balanced accuracy Precision Recall F1 AUC

One-way (ĝow)
XGBoost 0.2287 0.3893 0.0680 0.1158 0.9064
Random Forest 0.3403 0.6486 0.0320 0.0610 0.6898

Outbound (ĝout)
XGBoost 0.9598 0.9406 0.9789 0.9594 0.9958
Random Forest 0.8027 0.8304 0.7749 0.8017 0.9593

Inbound (ĝin)
XGBoost 0.3488 0.5482 0.1494 0.2348 0.9233
Random Forest 0.3928 0.6879 0.0977 0.1711 0.7737

We use a 80%-20% training/test split, and ten-fold cross-validation on the training sample over

a grid to tune the hyperparameters of each classifier (e.g., the learning rate and the maximum

depth of the trees for the XGBoost). Table E.2 shows the performance of both the XGBoost and the

Random Forest on each prediction task. Because the XGBoost overall accuracy metrics (F1 and

AUC) are superior in all tasks, we use the results of the XGBoost when augmenting consideration

sets.

9For the outbound leg model, we use as an outcome whether the product has the same exact outbound leg as
any product that was clicked on during the journey. That is, if an outbound leg is clicked on within a results page,
all returning flights displayed on the next page (which share the same already-clicked outbound leg) are defined as
positive labels for the predictive model.
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E.2 Computing purchase probabilities

Following (11), we can now approximate the conditional purchase probabilities in (15) using

a Monte Carlo approximation where we draw consideration sets. In each iteration of our MC

simulation, we form each consideration set by first including all products that have been clicked

on up to that point. Subsequently, for all remaining products, we add them to the consideration

set with a probability given by ĝCpx,βq. Finally, once we have drawn the consideration set in each

iteration of our simulation, we compute the purchase probabilities given each consideration set.10

All other products that do not belong to the consideration have a null purchase probability. We

outline such procedure in Algorithm 1 where we compute the purchase probabilities given a draw

from the posterior distribution ppβij |qij , y
c
ij1:t,Lijtq.

Algorithm 1 Computing purchase probabilities
Input

A vector of preferences βij

A set of products with at least one click Cobs
ij “ tk| Dt1 ď t, ycijt1 “ ku

Number of samples S for the Monte Carlo approximation
Trained predictor function ĝCpx,βq

Output
ppypij |ycij1:t,βijq

Procedure
for all s Ð 1 : S do

Initialize consideration set Cij Ð Cobs
ij

for all k R Cobs
ij do

Draw u „ Up0, 1q

if u ď ĝCpxijk,βijq then
Cij Ð Cij Y tku

end if
end for
Compute ps “ ppypij |Cij ,βijq using GLK simulator and Equation (6)

end for
Return ppypij |ycij1:t,βijq « 1

S

řS
s“1 ps

10Specifically, we use the GHK-algorithmGeweke (1991) to approximate purchase probabilities from a multinomial
probit model given a consideration set.
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F Empirical application: Additional summary statistics

F.1 Product attributes
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Table F.3: Summary statistics of product attributes in page results

Product attribute Mean SD Quantiles
5% 50% 95%

Product level attributes
Price 1,547 3,269 196 751 5,320
Cheapest price per journey 698 1,526 98 401 2,117

Outbound level attributes
Length of trip (hours) 11.28 8.49 2.05 8.42 28.60
Shortest length of trip per journey (hours) 5.86 5.05 1.25 4.07 17.08
Number of stops: Non stop 0.20 . 0 0 1
Number of stops: One stop 0.59 . 0 1 1
Number of stops: 2+ stops 0.21 . 0 0 1
Alliance: Alaska Airlines 0.04 . 0 0 0
Alliance: Frontier 0.01 . 0 0 0
Alliance: JetBlue 0.03 . 0 0 0
Alliance: Multiple alliances 0.07 . 0 0 1
Alliance: Other – No alliance 0.07 . 0 0 1
Alliance: OneWorld (American) 0.27 . 0 0 1
Alliance: Skyteam (Delta) 0.27 . 0 0 1
Alliance: Spirit 0.02 . 0 0 0
Alliance: Star Alliance (United) 0.23 . 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.04 . 0 0 0
Dep. time: Morning (5:00am – 11:59am) 0.47 . 0 0 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.31 . 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.18 . 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.05 . 0 0 0
Arr. time: Morning (5:00am – 11:59am) 0.24 . 0 0 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.34 . 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.37 . 0 0 1

Inbound level attributes
Length of trip (hours) 11.08 9.02 1.83 7.92 29.50
Shortest length of trip per journey (hours) 6.17 5.31 1.25 4.27 17.75
Number of stops: Non stop 0.19 . 0 0 1
Number of stops: One stop 0.70 . 0 1 1
Number of stops: 2+ stops 0.11 . 0 0 1
Alliance: Alaska Airlines 0.02 . 0 0 0
Alliance: Frontier 0.02 . 0 0 0
Alliance: JetBlue 0.02 . 0 0 0
Alliance: Multiple alliances 0.02 . 0 0 0
Alliance: Other – No alliance 0.07 . 0 0 1
Alliance: OneWorld (American) 0.51 . 0 1 1
Alliance: Skyteam (Delta) 0.13 . 0 0 1
Alliance: Spirit 0.05 . 0 0 1
Alliance: Star Alliance (United) 0.15 . 0 0 1
Dep. time: Early morning (0:00am - 4:59am) 0.03 . 0 0 0
Dep. time: Morning (5:00am – 11:59am) 0.65 . 0 1 1
Dep. time: Afternoon (12:00pm - 5:59pm) 0.18 . 0 0 1
Dep. time: Evening (6:00pm - 11:59pm) 0.14 . 0 0 1
Arr. time: Early morning (0:00am - 4:59am) 0.04 . 0 0 0
Arr. time: Morning (5:00am – 11:59am) 0.55 . 0 1 1
Arr. time: Afternoon (12:00pm - 5:59pm) 0.19 . 0 0 1
Arr. time: Evening (6:00pm - 11:59pm) 0.23 . 0 0 1
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F.2 Filter construction and summary statistics

As mentioned in the main manuscript, the focal company did not collect the action of “filtering”

directly. Rather, we infer such a behavior from the flight results we observe in the data. Specifi-

cally, we construct filter data conservatively in the following manner: (1) We infer that a filter was

applied if all product results on a page have the same level on a product attribute (e.g., non-stop)

and this does not occur in the first page of results.11 (2) We allow multiple filters on a page as long

as they belong to different attributes (e.g., American Airlines and non-stop).

Similar to the click and purchase data, airline data in filters is equally sparse, so we aggregate

them into filters at the alliance level. That said, we still infer whether a filter was applied on a

page using the airline data, as customers could only apply filters at the airline level and not at

the alliance level. For example, if a page contains results from multiple OneWorld airlines (e.g.,

American Airlines and British Airways results), we do not define those results as resulting from

a filter, as the platform did not allow customers to filter specifically on alliances. However, we

define a filter on the OneWorld alliance if all flights belong to a single airline that belongs to the

OneWorld alliance (e.g., all flights American Airlines or all flights British Airways).

Table F.4 shows, per attribute and level, the percentage of first-party journeys where a filter

was applied.

Table F.4: Percentage of journeys with filters in attributes.

Attribute Level Proportion journeys filtered

Mean s.e.

OneWorld 0.020 0.001

Skyteam 0.016 0.001

Star Alliance 0.017 0.001

Alaska Airlines 0.003 0.000

Frontier 0.001 0.000

JetBlue 0.006 0.000

Spirit 0.001 0.000

Alliance

OTHER NO ALLIANCE 0.008 0.001

Non-stop 0.138 0.002Stops

One stop 0.038 0.001

Early morning (0:00am - 4:59am) 0.004 0.000

Morning (5:00am - 11:59am) 0.032 0.001

Afternoon (12:00pm - 5:59pm) 0.027 0.001

Departure time

Evening (6:00pm - 11:59pm) 0.028 0.001

Early morning (0:00am - 4:59am) 0.002 0.000

Morning (5:00am - 11:59am) 0.018 0.001

Afternoon (12:00pm - 5:59pm) 0.019 0.001

Arrival time

Evening (6:00pm - 11:59pm) 0.021 0.001

11Because the website does not filter by default, a constant attribute on the first page reflects limited supply, not a
filtering constraint.
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G Empirical application: Additional results

G.1 Context-specific parameter estimates

Table G.5: Posterior mean of location click and purchase parameters. Contexts 1-11

Context

Parameter 1 2 3 4 5 6 7 8 9 10 11

Query
Is it roundtrip? Yes 0.24 0.91 0.90 0.99 0.97 0.93 0.95 0.99 0.20 0.96 0.97
Is it domestic? (within EU is domestic) Yes 1.00 1.00 1.00 0.00 0.02 1.00 0.00 1.00 0.08 0.00 0.03
Flying from international airport? Yes 0.55 0.74 0.48 0.87 0.74 0.50 0.94 0.62 0.90 0.90 0.90
Market: US Domestic 0.98 0.95 0.97 0.00 0.00 0.97 0.00 0.93 0.00 0.00 0.00
Market: US Overseas 0.00 0.00 0.00 0.83 0.01 0.00 0.72 0.00 0.00 0.78 0.01
Market: Non-US across continent 0.00 0.00 0.00 0.15 0.05 0.00 0.26 0.00 0.09 0.20 0.08
Market: Non-US within continent 0.00 0.02 0.00 0.01 0.07 0.00 0.01 0.04 0.19 0.01 0.10
Market: US North America 0.02 0.02 0.03 0.00 0.88 0.02 0.00 0.03 0.72 0.00 0.81
Type of location searched: Airport 0.92 0.89 0.93 0.88 0.90 0.88 0.89 0.91 0.90 0.85 0.81
Type of location searched: Both 0.02 0.01 0.02 0.02 0.06 0.04 0.04 0.02 0.07 0.04 0.07
Type of location searched: City 0.05 0.10 0.05 0.10 0.04 0.08 0.07 0.07 0.03 0.12 0.12
Trip distance (1000s kms) 1.87 2.53 1.84 9.72 2.71 0.80 9.71 2.36 2.53 8.96 2.77
More than one adult? Yes 0.17 0.39 0.24 0.28 0.46 0.22 0.18 0.50 0.26 0.26 0.47
Traveling with kids? Yes 0.04 0.13 0.06 0.03 0.17 0.05 0.11 0.17 0.10 0.07 0.12
Is it summer season? Yes 0.43 0.39 0.42 0.00 0.26 0.36 0.21 0.00 0.62 0.98 0.21
Holiday season? Yes 0.00 0.00 0.01 0.06 0.07 0.01 0.00 0.32 0.00 0.00 0.09
Does stay include a weekend? Yes 0.15 0.89 0.99 1.00 0.97 0.83 1.00 0.99 0.25 1.00 0.90
Length of stay (only RT) (days) 2.30 5.25 5.63 14.77 9.83 3.88 45.67 6.16 2.81 13.16 7.40
Searching on weekend? Yes 0.19 0.21 0.21 0.25 0.24 0.19 0.26 0.17 0.24 0.27 0.20
Searching during work hours? Yes 0.52 0.52 0.52 0.51 0.55 0.54 0.37 0.59 0.42 0.43 0.60
Time in advance to buy (days) 23.95 58.21 41.18 107.77 81.79 37.34 53.67 111.04 29.07 39.38 92.67

Preferences
Intercept Search: OW Search -0.02 -0.28 0.01 -0.14 0.04 -0.19 0.06 0.09 -0.06 -0.18 -0.16
Intercept Search: RT Outbound -0.22 -0.51 -0.13 -0.70 -0.13 -0.49 -0.10 -0.09 -0.24 -0.41 -0.45
Intercept Search: RT Inbound -0.03 -0.11 -0.26 -0.18 -0.01 -0.13 -0.11 -0.15 -0.06 -0.10 -0.04
Intercept Click: OW Search -0.81 -0.37 -0.61 0.04 0.08 -0.09 -0.08 -0.09 -0.36 -0.02 -0.03
Intercept Click: RT Outbound -0.28 -0.17 -0.18 -0.14 -0.18 -0.43 -0.31 -0.61 -0.04 -0.21 -0.43
Intercept Click: RT Inbound 0.05 -0.18 0.19 0.28 0.35 -0.15 0.43 0.08 -0.02 0.15 -0.13
Price -0.19 0.02 -0.37 -0.19 -0.18 0.15 -0.34 -0.15 -0.03 -0.06 0.32
Length of trip (hours) -0.59 -0.54 -0.90 -0.59 -0.85 -0.20 -0.69 -0.46 -0.49 -0.21 -0.09
Number of stops: Non stop 0.11 0.43 0.60 0.31 0.60 0.14 0.35 0.18 -0.02 0.22 0.03
Number of stops: 2+ stops -0.33 -0.15 -0.28 -0.46 -0.12 -0.06 -0.40 -0.10 -0.10 -0.25 -0.05
Alliance: Skyteam (Delta) -0.02 -0.12 -0.18 -0.09 -0.14 -0.09 -0.01 -0.06 -0.12 0.03 -0.10
Alliance: Star Alliance (United) -0.10 -0.19 -0.21 0.14 0.12 -0.16 -0.06 -0.09 0.02 -0.06 -0.06
Alliance: Alaska Airlines -0.06 -0.08 0.01 0.02 -0.10 -0.01 0.13 -0.01 -0.07 -0.01 -0.04
Alliance: Spirit -0.21 -0.02 -0.21 0.01 0.00 0.04 -0.06 -0.05 -0.01 0.00 0.01
Alliance: JetBlue -0.02 0.23 -0.01 0.00 0.08 0.13 -0.13 -0.03 0.04 0.04 0.02
Alliance: Frontier -0.11 0.06 -0.03 -0.03 0.00 0.02 -0.02 0.01 0.06 0.01 0.00
Alliance: Other – No alliance -0.09 -0.05 -0.04 0.05 0.02 -0.03 0.12 0.12 -0.14 -0.06 -0.04
Alliance: Multiple alliances -0.13 -0.07 -0.10 0.02 -0.08 -0.02 -0.09 -0.04 -0.09 0.00 0.03
Outbound dep. time: Early morning (0:00am - 4:59am) -0.16 -0.01 0.07 0.05 0.11 0.01 -0.08 0.01 -0.03 -0.01 -0.02
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.08 -0.26 -0.09 0.03 0.01 -0.03 -0.14 -0.06 -0.04 -0.10 -0.07
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.27 -0.21 -0.07 -0.07 -0.10 -0.04 -0.11 -0.01 -0.03 -0.07 -0.07
Outbound arr. time: Early morning (0:00am - 4:59am) -0.11 -0.14 -0.20 0.00 -0.05 -0.04 -0.11 -0.05 -0.03 -0.05 -0.02
Outbound arr. time: Afternoon (12:00pm - 5:59pm) 0.10 0.13 0.19 -0.11 0.04 -0.11 -0.05 -0.02 -0.09 -0.12 -0.08
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.01 -0.17 0.12 -0.08 -0.12 0.01 -0.14 -0.14 -0.07 -0.01 -0.06
Inbound dep. time: Early morning (0:00am - 4:59am) -0.08 0.11 0.00 0.10 -0.01 0.12 -0.07 -0.15 -0.02 0.11 0.10
Inbound dep. time: Afternoon (12:00pm - 5:59pm) 0.10 0.23 0.35 0.05 0.15 -0.01 0.07 0.09 -0.01 0.00 -0.03
Inbound dep. time: Evening (6:00pm - 11:59pm) 0.06 -0.03 0.06 0.05 -0.04 -0.01 0.12 -0.01 0.01 0.03 -0.01
Inbound arr. time: Early morning (0:00am - 4:59am) -0.11 0.05 0.00 0.02 0.05 0.07 -0.13 -0.07 0.00 0.11 0.08
Inbound arr. time: Afternoon (12:00pm - 5:59pm) 0.01 0.03 0.14 -0.04 0.09 0.00 0.09 0.03 -0.05 -0.02 -0.06
Inbound arr. time: Evening (6:00pm - 11:59pm) 0.20 0.21 0.44 -0.01 0.17 -0.01 -0.05 0.09 0.00 0.02 -0.04
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Table G.6: Posterior mean of location click and purchase parameters. Contexts 12-22

Context

Parameter 12 13 14 15 16 17 18 19 20 21 22

Query
Is it roundtrip? Yes 0.09 0.16 0.96 0.31 0.37 0.27 0.13 0.17 0.09 0.05 0.92
Is it domestic? (within EU is domestic) Yes 0.00 0.94 0.19 1.00 0.97 0.00 0.00 0.18 0.06 1.00 0.71
Flying from international airport? Yes 0.90 1.00 0.99 0.44 1.00 0.94 0.89 0.97 0.88 0.52 1.00
Market: US Domestic 0.00 0.05 0.00 0.98 0.15 0.00 0.00 0.00 0.00 0.96 0.01
Market: US Overseas 0.87 0.00 0.00 0.00 0.00 0.66 0.79 0.01 0.00 0.00 0.00
Market: Non-US across continent 0.11 0.00 0.06 0.00 0.00 0.30 0.19 0.15 0.06 0.00 0.01
Market: Non-US within continent 0.01 0.93 0.29 0.01 0.74 0.04 0.01 0.43 0.36 0.02 0.97
Market: US North America 0.00 0.02 0.65 0.01 0.11 0.00 0.00 0.41 0.58 0.02 0.01
Type of location searched: Airport 0.84 0.76 0.83 0.90 0.76 0.85 0.88 0.87 0.79 0.91 0.84
Type of location searched: Both 0.01 0.10 0.08 0.04 0.03 0.04 0.03 0.09 0.16 0.06 0.13
Type of location searched: City 0.15 0.14 0.09 0.05 0.22 0.11 0.10 0.04 0.06 0.03 0.03
Trip distance (1000s kms) 9.81 1.16 2.41 0.50 0.59 8.70 9.84 2.37 2.72 2.39 1.37
More than one adult? Yes 0.19 0.40 0.08 0.13 0.48 0.17 0.29 0.03 0.42 0.45 0.41
Traveling with kids? Yes 0.06 0.09 0.01 0.03 0.13 0.05 0.02 0.01 0.07 0.11 0.12
Is it summer season? Yes 0.57 0.56 0.59 0.43 0.37 0.40 0.01 0.10 0.03 0.02 0.22
Holiday season? Yes 0.00 0.01 0.00 0.00 0.02 0.00 0.15 0.00 0.19 0.37 0.06
Does stay include a weekend? Yes 0.30 0.25 0.99 0.16 0.41 0.15 0.11 0.23 0.24 0.25 0.90
Length of stay (only RT) (days) 6.53 2.92 8.55 1.56 3.92 3.09 3.40 3.17 4.03 4.21 6.96
Searching on weekend? Yes 0.18 0.29 0.14 0.22 0.28 0.26 0.17 0.12 0.22 0.18 0.27
Searching during work hours? Yes 0.34 0.29 0.47 0.58 0.31 0.41 0.48 0.41 0.30 0.50 0.29
Time in advance to buy (days) 28.34 30.26 25.97 14.45 60.45 46.61 121.05 8.12 109.18 116.00 73.98

Preferences
Intercept Search: OW Search -0.30 0.12 0.19 -0.16 -0.15 -0.31 -0.02 -0.15 0.14 -0.01 -0.12
Intercept Search: RT Outbound 0.01 -0.04 -0.17 -0.08 -0.23 -0.30 0.03 -0.22 0.09 -0.02 -0.34
Intercept Search: RT Inbound 0.17 -0.08 -0.05 0.02 0.01 -0.03 -0.02 0.01 0.02 -0.01 0.01
Intercept Click: OW Search -0.31 -0.34 -0.06 -0.46 -0.35 -0.34 -0.28 -0.14 -0.29 -0.32 -0.01
Intercept Click: RT Outbound 0.06 -0.06 -0.52 -0.19 -0.16 -0.24 -0.20 0.02 -0.04 0.02 -0.23
Intercept Click: RT Inbound 0.01 0.00 0.02 0.16 -0.04 -0.04 0.09 -0.03 0.03 -0.04 0.02
Price -0.38 -0.11 -0.08 -0.04 0.17 0.13 -0.14 -0.15 -0.13 -0.15 0.13
Length of trip (hours) -0.45 -0.53 -0.33 -0.23 -0.22 -0.08 -0.35 -0.35 -0.38 -0.29 -0.15
Number of stops: Non stop 0.02 0.05 -0.01 -0.05 -0.11 -0.06 -0.04 0.18 -0.06 -0.13 0.06
Number of stops: 2+ stops -0.15 -0.09 -0.09 -0.09 -0.03 -0.12 -0.30 -0.11 -0.01 -0.07 -0.03
Alliance: Skyteam (Delta) -0.16 -0.05 -0.07 -0.04 -0.16 -0.12 -0.09 -0.05 -0.08 -0.07 -0.03
Alliance: Star Alliance (United) -0.07 0.02 -0.07 -0.16 -0.13 -0.18 -0.09 -0.01 -0.03 -0.01 -0.04
Alliance: Alaska Airlines 0.02 -0.03 0.04 -0.07 -0.03 -0.02 0.03 -0.05 0.02 -0.06 -0.03
Alliance: Spirit 0.00 -0.03 -0.02 0.00 0.00 0.02 -0.02 0.04 -0.04 0.02 0.02
Alliance: JetBlue 0.10 -0.03 -0.02 -0.01 -0.02 0.02 -0.10 0.12 -0.08 0.03 0.06
Alliance: Frontier 0.06 -0.04 -0.01 -0.02 -0.04 0.00 -0.01 0.03 0.01 -0.03 0.00
Alliance: Other – No alliance 0.10 -0.13 -0.01 0.02 -0.11 -0.03 -0.05 -0.08 -0.01 -0.03 -0.03
Alliance: Multiple alliances -0.09 0.12 -0.07 0.02 -0.01 0.02 -0.12 0.04 -0.01 -0.03 0.00
Outbound dep. time: Early morning (0:00am - 4:59am) -0.02 0.02 -0.04 -0.02 0.07 0.04 -0.12 -0.01 -0.10 0.00 -0.02
Outbound dep. time: Afternoon (12:00pm - 5:59pm) -0.04 0.00 -0.10 -0.14 -0.08 -0.10 -0.12 -0.09 -0.08 -0.11 -0.01
Outbound dep. time: Evening (6:00pm - 11:59pm) -0.06 -0.17 0.00 -0.16 -0.19 -0.17 -0.06 -0.07 -0.04 -0.12 -0.04
Outbound arr. time: Early morning (0:00am - 4:59am) -0.13 -0.09 -0.06 0.00 -0.04 -0.05 -0.06 -0.01 -0.08 -0.10 0.00
Outbound arr. time: Afternoon (12:00pm - 5:59pm) -0.03 0.04 -0.05 -0.23 -0.04 -0.10 -0.26 -0.08 -0.14 -0.01 0.00
Outbound arr. time: Evening (6:00pm - 11:59pm) -0.13 -0.14 -0.18 -0.19 -0.22 -0.12 -0.18 0.05 -0.10 -0.09 -0.02
Inbound dep. time: Early morning (0:00am - 4:59am) 0.15 -0.04 -0.07 -0.06 0.00 0.07 -0.09 0.12 -0.04 0.05 0.06
Inbound dep. time: Afternoon (12:00pm - 5:59pm) -0.02 0.06 -0.06 0.08 -0.02 -0.02 0.01 0.00 0.02 -0.01 0.03
Inbound dep. time: Evening (6:00pm - 11:59pm) -0.04 0.02 0.03 -0.01 -0.01 -0.01 0.04 -0.03 0.03 -0.02 -0.01
Inbound arr. time: Early morning (0:00am - 4:59am) 0.12 0.04 -0.03 0.00 0.00 0.09 -0.08 0.10 -0.03 0.01 0.02
Inbound arr. time: Afternoon (12:00pm - 5:59pm) 0.00 -0.01 0.00 0.00 0.00 -0.02 0.01 -0.01 0.04 -0.04 0.01
Inbound arr. time: Evening (6:00pm - 11:59pm) 0.00 0.04 0.02 0.10 0.00 0.00 0.00 0.00 0.00 -0.02 -0.02
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G.2 Relative differences across contexts (all variables)

We normalize the location parameters to account for how they vary across contexts and how much

uncertainty their posterior have. First, for each context c, we compute the posterior mean of each

location parameter θc. Second, we compare these location parameters with the population mean

level of those same parameters, but now we include query parameters as well. We subtract these

two to measure whether contexts are above or below average on each of the query parameters and

click and purchase preferences. Finally, we normalize these differences by dividing by the square

root of the posterior variance across journeys. This variance is composed by two terms (similar to

ANOVA): (1) the within-context posterior variance of each θc, which measures the posterior un-

certainty of each location parameter θc; and (2) the across-context variance of all θc with respect to

the population mean, which captures how much variance is explained by the differences between

contexts. By normalizing the location parameters, we can now compare contexts with respect to

whether they score higher or lower than average on each of the query parameters and preferences.
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Figure G.2: Posterior mean of all context location parameters θc, relative to the average in the pop-
ulation. The top figure shows how each context deviates from the average with respect to the query
variables. The bottom figure shows deviations with respect to the preference parameters. Blue (red)
boxes mean positive (negative) deviation from the average in the population.
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G.3 Top 50 routes per context: All contexts
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Figure G.3: Top 50 routes per context
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H Model predictive ability
To assess the predictive performance of the model, we focus on predicting whether a transaction

occurs at the end of each (held-out) journey, and if so, which product is chosen. We compare our

model with other established methodologies that have been extensively tested for such predictive

tasks. We evaluate predictive validity of our model on two distinct occasions: immediately after

the customer submits the query (i.e., before any clicks are observed) and once the customer has

clicked on five occasions. These time points (i.e., after query and after clicks) dictate the available

information for making predictions, both for our model and the benchmark models.12

H.1 Benchmarks of comparison
We compare our model to two commonly used machine learning classification methods, Random

Forest (RF) and XGBoost. As these benchmarks can only be used to predict outcomes given a set

of features, we create a comprehensive set of features that capture the information available (to

the firm) at each prediction point. In addition to the attributes of the corresponding product, our

set of features includes summary statistics from: (1) the query of the focal journey (capturing the

attributes of the search), (2) the attributes of the products shown in the first page of the focal jour-

ney (capturing the attributes of the products presented to the consumer), (3) the clicks and filters

(during the focal journey) up to the moment when the prediction is made (capturing what the

customer has been clicking), and (4) the queries, product attributes, clicks, filters, and purchases

from past journeys (capturing past behavior). (Please refer to Web Appendix H.2 for a detailed

description of the features and the estimation of benchmarks.)

Machine learning classification models are often built for binary tasks. In our case, not only

is the classification not binary, but the choice set size (the number of possible available flights to

choose from) varies from one classification task (journey) to another. To address this complication,

we create a series of binary classifications and use normalization to convert these to a multinomial

choice task. Specifically, we train each benchmark model as a binary predictive model where each

observation represents choosing one product in a particular journey (for each journey, we include

an additional no-purchase “product” for the outside option). Before making predictions, we nor-

malize the prediction scores per customer per journey such that the scores for all alternatives (in

each journey) sum to one. To predict if the customer buys any product or does not buy, we label

it as a purchase if the normalized score for the no-purchase alternative is lower than 0.5. For the

product choice task, we normalize the predictive scores of each product by dividing by the sum of

the scores of all products except the outside option (i.e., choice conditional on purchase) and label

as the chosen product, the product with the highest score. For this evaluation, we only consider

(held-out) journeys that ended up in a purchase, for which we observe the actual product choice.

12When a (held-out) journey has less than 5 clicks occasions, we use all clicks prior to purchase. Doing so not only
provides a more conservative measure of the predictive improvements but also avoids selection biases due to shorter
and longer journeys. Also, results are qualitatively similar when using different numbers of click occasions.

App - 29



H.2 Estimation of Benchmark models

We describe in detail how the benchmark models are trained and how the binary prediction scores

are normalized per journey. As both benchmark models are built for binary classification tasks (or

multi-class classification tasks with a fixed set of classes across observations), we create a series

of binary classifications and use normalization to convert these to a multinomial choice task (or

varying choice sizes, depending on the consideration set of each journey).

Consider customer i, in journey j and the set Kj that contains the products customer i can

buy in journey j (we also include k “ 0, an additional “no-purchase product” in this set). We

assemble the set of all observations O “ tpi, j, kq| i “ 1, . . . , I, j “ 1 . . . , Ji, k P Kju, where each

observation (“row” in our dataset) represents a product in a journey. We create a single training

dataset using the clickstream data of the entire journey of each customer in the training data to

estimate the benchmark models, which mimic the information seen by the proposed model.

To compute predictions in the test set (i.e., in journeys that have not been observed yet), we

create a dataset that changes as information comes in. When making predictions after 5 steps,

we use all the information in the journey available within the first 5 steps of the journey. To

avoid selection bias and to be able to compare quantities across the different stages of the journey,

we hold constant the set of journeys across the two test conditions: after query and after 5 steps

(columns of Table 4). Specifically, for journeys shorter than 5 steps, we use the entire journey when

making 5-step predictions.

For each observation, we create the binary outcome Yijk, which equals one if customer i pur-

chased product k during journey j, and zero otherwise (Yij0 “ 1 if the customer ends the journey

without a purchase); and a set of features Xijk (“columns” in our dataset) that contain the infor-

mation for each customer, journey, and product. Specifically, we include five types of features in

Xijk:

(1) the set of query variables for journey j (same as those in the query model),

(2) summary statistics of the attributes of all the products shown in the first page of journey j

(same as those in the main model),

(3) the clicks and filters (during the focal journey) up to the moment when the prediction is

made (capturing what the customer has been clicking so far),

(4) the queries, product attributes, clicks, filters, and purchases from past journeys (capturing

the customer’s past behavior), and

(5) the attributes of product k.

We now provide details about each of these sets of variables:

(1) We use the same set of query variables as in the main model. We encode all categorical

variables as binary (leaving one level out to avoid multicollinearity).
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(2) We use the same set of attributes as in the main model, with the exception that we encode

categorical variables in full one-hot encoding, such that each level in a categorical variable

has a corresponding binary feature. We summarize these features across all products shown

on the first page of journey j, and compute the average, minimum, and maximum shown

on the first page.

(3) We categorize ’clicks’ in two primary ways. Firstly, at the product level, we represent using

a binary feature whether the focal product k has been selected or not. In the training data,

clicks throughout the entire journey are used to formulate this binary feature since the model

undergoes a one-time training. In the test data, this feature is set to one if product k has

been clicked on by that point in the journey. If the product remains unclicked, this feature

corresponds to the percentage of products clicked in the training data; essentially, in the

absence of the feature, we resort to the mean value from the training data.

Secondly, at the journey level, we aggregate the features of all clicked products within the fo-

cal journey, utilizing averages for continuous data and counts for binary data. Mirroring the

process mentioned earlier, the training data summary is computed at the end of the journey,

whereas the test data incorporates information accessible up to that specific step. Further-

more, we document the total count of clicked products within the focal journey. Filters are

integrated in a similar fashion.

(4) We compute the average of variables (1) – (3) plus the attributes of purchased products and

the number of past purchases, across all past journeys of customer i. In the training data, for

focal journey j, these summaries are computed across journeys 1 through j ´ 1; whereas in

the test data, we use the summary across all journeys of customer i in the training data. We

also include the number of past journeys (such that a non-linear model can recreate counts).

(5) We include the features of product k as done in the proposed model, and we use a binary

feature to distinguish between actual products and the No-Purchase product.

In sum, we generated a training dataset of 258,588 observations and 454 features. We train

both binary classifiers, Random Forest (RF) and XGBoost, using a cross-entropy loss function (i.e.,

binary logistic). For the RF, we use honest splitting estimation, where the sample is split in two:

one to construct the trees and another to evaluate the predictions. We use a sample fraction of 0.5,

a number of variable tries per split of 41 (
?

#features ` 20), an honesty fraction of 0.5, and 2000

trees. For XGBoost, we use 100 rounds with a learning rate of 1 and a maximum depth of trees of

4.

After the models are trained, we compute predictions on the test data, xpY ijk, in multiple steps.

First, we normalize the predictive scores from the benchmarks per journey, such that they sum to
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one by

xpY
norm
ijk “

xpY ijk
ř

k1PKpjq

xpY ijk1

,

as these binary predictions are generated independently for all observations. Note that this nor-

malization is not needed for the proposed model as the model provides a probability measure

directly. The next steps apply to both benchmark models and our proposed model.

Second, for the incidence predictive task, we label a journey as a purchase if the normalized

score for the no-purchase product is lower than 0.5, that is,

pY incidence
ij “ 1

!

xpY
norm
ij0 ď 0.5

)

.

We compute balanced accuracy, precision, and recall from these predicted labels.

Third, for the product choice given purchase predictive task, we first compute choice given

purchase scores per product by

xpY
choice
ijk “

xpY
norm
ijk

ř

k1PKpjq:k‰0

xpY
norm
ijk1

,

and label the predicted chosen alternative as the product with the maximum score per journey

pY choice
ij “ argmax

kPKpjq

!

xpY
choice
ijk

)

.

We use the predicted labels pY choice
ij to compute the hit rate (percentage of journeys where predicted

choice equals actual chosen product). In order to provide information on how the model predicts

at the product level (what the models were trained for), we use xpY
choice
ijk to compute balanced ac-

curacy by labeling as one the product with the highest score and computing the confusion matrix

using the data at the journey-product level. Note that in such case, precision, recall, and balanced

accuracy are all equal, as there is only one chosen product per journey (actual), and only one

product is predicted to be chosen.

H.3 Measures of predictive performance
Due to the predominant occurrence of non-purchase outcomes in the majority of the journeys,

we evaluate predictive ability in purchase incidence based on balanced accuracy (Brodersen et al.

2010) as it provides a more reliable measure of model performance when classes are imbalanced.

It is calculated as the average of sensitivity/recall (true positive rate) and specificity (true negative

rate) and therefore ranges from 0 to 1, where a value of 1 indicates perfect prediction performance.

For product choice given incidence, we report hit rate (proportion of journeys that were correctly

predicted) and balanced accuracy at the product level.
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I Further details on the value of first-party data

Similarly to the analysis presented in Web Appendix H, we compute the choice probabilities for

all models at each stage of the journey. We consistently employ all journeys across all stages,

ensuring a constant set of journeys when conducting comparisons throughout the journey. For

instance, when forecasting after 5 steps (or 2 steps), we consider the initial five (or two) steps for

journeys with at least 5 (or 2) steps, while accommodating all available steps for journeys shorter

than 5 (or 2) steps. This methodology enables us to assess the journey’s value with a conservative

lens, as performance on the held-out set would notably enhance if we were to observe a uniform

5 steps across all journeys.

We compute hit rates at the product level, analogous to the approach described in Section H.

When exploring the ability of the model to predict what attributes the customer will choose, we

compute the probabilities of choosing each level by aggregating the choice probabilities across all

products with such a level. For categorical variables, we compute hit rates, and for continuous

variables, we utilize the Root Mean Square Error (RMSE).

For example, let us consider a categorical attribute such as number of stops. For each level —

Non-stop, One stop, and 2+ stops — we compute the probability that a customer, conditional on

making a purchase, will opt for a specific stop level. This is done by aggregating the choice proba-

bilities associated with the ‘stop’ attribute. For instance, the probability that a customer will select

a non-stop flight corresponds to the cumulative choice probabilities of all non-stop flights. Subse-

quently, the predicted number of stops is identified as the level with the highest choice probability.

We then contrast these predicted labels with the actual labels to compute hit rates, which represent

the proportion of journeys where we accurately predict the number of stops for the chosen flight.

A similar methodology is applied when considering airline alliances, which is also categorical.

For a continuous attribute such as price, we first calculate the square errors between the price

of each alternative and the price of the purchased alternative, and then compute the weighted

average of those square errors (by journey) using the purchase probabilities as weights, by

MSEPrice
ij “

ÿ

kPKpjq

ppypij “ k|Dataijtq ¨
`

Priceijk ´ Priceijk˚

˘2
,

where ppypij “ k|Dataijtq are the purchase probabilities and k˚ is the true purchased alternative.

First, note that the square errors are independent from the predictions, but the weighted average

is not. Second, note that if the model predicts with probability one on alternatives with the same

price as the purchased one, then this expectation is zero. Finally, we average those expected square

errors and compute the square root

RMSEPrice “

d

1

Joos

ÿ

ij

MSEPrice
ij ,
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where Joos is the number of held-out journeys. We follow the same procedure for the length of the

trip. We compute these scores on the normalized prices and lengths to weigh all journeys equally

and to avoid searches with more expensive and longer destinations to dominate the score.

J Further details on the retargeting analysis

We simulate outcomes for a single ad impression of a retargeted ad for each customer where we

vary the product featured in the impression. For each journey with a minimum of two clicks in

the holdout sample, we select a product to be displayed in a single ad impression. Using our

model and the data up to the current step in the journey, we use the posterior inferences on βij to

compute the posterior expected utility for each product in the journey and select the product with

the maximum expected utility. We compare this product chosen against two benchmarks. First,

we select the product that is expected to be the most popular a priori, without any clickstream

and personalized data. Since product availability is quite sparse across journeys as a specific

product is unlikely to appear across multiple journeys, we use the population average preferences

from the Only purchase model estimated in Section 5, and compute expected utility under the

population preferences to choose the product with highest expected utility across the population.

Second, we select the product that has been clicked last on each journey. In those journeys where

no product has been clicked on we select the most popular product described in the previous

benchmark.

For each retargeting ad, we simulate click-through-rates using the estimates of a model with

full information of the journey, that is, those using all data from those journeys, including clicks

after the second step and purchases (which has different estimates than those used for setting the

policy). We simulate each ad impression click occasion as a univariate probit model with utilities

urijpk
˚q “ β0r ` βx

ij
1xijk˚ ` εrij

where k˚ is the chosen product for each retargeting method, β0r is a retargeting ad intercept and

εrij „ N p0, σ2
r q is the unobserved component of utility. Since both the intercept β0r and the error

term variance σ2
r are not parameters in our model, we set them to different values. The intercept

β0r is set such that the mean CTR across all products and journeys for a retargeted ad equals

2% across journeys (the average retargeting CTR without content personalization reported in the

industry is 0.7% (Signifi Media 2020), and highly personalized ads have 3x higher CTRs compared

to non-personalized ads (Bleier and Eisenbeiss 2015)). We set the variance of the error term to

σ2
r “ 1.25 and vary it for robustness.

We show in Table J.7 the predicted CTR across retargeting methods to choose the personalized

product and choices of σ2
r . We note that even though the base CTR is sensitive to the choice of σ2

r ,

the relative improvement is robust.
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Table J.7: Retargeting: Predicted CTR when the firm utilizes insights from the model to formulate a
retargeting offer. The baseline models presume that the retargeting offer features the product that was
most recently clicked or the most popular product.

Model
Click-through rates

σ “1.00 σ “1.25 σ “1.50

Baseline 1 (Most popular) 0.108 0.054 0.027
Baseline 2 (Last clicked) 0.111 0.056 0.028

% increase vs. most popular +3.05% +3.65% +3.93%

Highest preference based on our model 0.143 0.074 0.037
% increase vs. most popular +31.94% +36.27% +39.16%

% increase vs. last clicked +28.04% +31.47% +33.90%
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