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Web Appendix A: Model Estimation

In this appendix we describe the hierarchical Bayesian framework used to estimate the model

parameters.

So as to ensure identification of the states (i.e., prevent label switching), we restrict the opening

probabilities to be decreasing in the relationship states.A1 We therefore reparameterize ζo in the

following manner,

ζok =


ζ ′o1 if k = 1

ζ ′ok−1 − exp
(
ζ ′ok
)

for k = 2, . . . ,K ,

and estimate ζ′o instead. Note that this restriction does not impose any a priori assumption on

the model.

Let Ω denote the following (population-level) parameters: ζ′o (opening), ζc (clicking given

open), ζu (unsubscribing given open), φ (transition probabilities), ρ (initial probabilities), β (effect

of covariates on the state-dependent probabilities), and δ (effect of covariates on the transition

probabilities). The vector ξi = {ηi,ψi} contains all the individual-level unobserved parameters

for customer i. Let ξ = {ξi}i=1,...,I denote all the individual-level parameters (where I is the

number of customers in the calibration sample), and Σξ denote the variance-covariance matrix for

cross-sectional heterogeneity. The full joint posterior distribution can be written as

f(Ω, ξ|data) ∝

{ I∏
i=1

Li(Ω, ξi | data)f(ξi |Σξ)

}
f(Σξ)f(Ω) ,

where Li(Ω, ξi | data) is defined in (11). The term f(ξi |Σξ) denotes the prior (or mixing) dis-

tribution for ξi, which is assumed to follow a multivariate normal distribution with mean 0 and

variance-covariance matrix Σξ. The terms f(Ω) and f(Σξ) denote the (hyper)priors for the pop-

ulation parameters. Uninformative (vague) priors are used for all parameters. We assume Σξ has

A1By ensuring ordering in one of the state-dependent behaviors (e.g., probability of opening given state member-
ship) we prevent label switching without imposing any restriction on the relationships among behaviors.
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an inverse-Wishart prior with degrees of freedom df = K(K − 1) + 7 and scale matrix R, with

diag(R) = 1K(K−1)+2/(3 × df), where 1A denotes a 1×A vector of ones. We assume that Ω has a

multivariate normal prior with mean µΩ and variance-covariance matrix ΣΩ. The values of µΩ and

ΣΩ were chosen to ensure uninformative priors in the transformed space. The mean is specified as

µΩ =
[
0 × 1K , 0.1 × 1K , −3 × 1K , 0.5 × 1K(K−1) , −10 × 1K−1 , −1 × 1Cδ , 0.1 × 1Co+Cc+Cu

]
,

where Cδ is the number of covariates included in the transition probability equation multiplied by

K(K− 1), and Cu, Co, and Cc are the number of covariates incorporated in the equations for each

of the three observed behaviors (excluding the intercept), multiplied by K. The variance-covariance

matrix is specified as diag(ΣΩ) =
[
1.2×1K , 0.3×1K , 0.5×1K , 0.01×1K(K−1) , 0.1×1K−1 , 0.1×

1Cδ , 0.3× 1Co+Cc+Cu
]
.

Since there are no closed-form expressions for the posterior distributions of ξ and Ω, we use a

Gaussian random-walk Metropolis-Hasting algorithm to draw from these distributions. We draw

recursively from the following posterior distributions:

• [Metropolis-Hastings]

f(Ω |µΩ,ΣΩ, ξ, data) ∝ exp
(
.5(Ω− µΩ)′Σ−1

Ω (Ω− µΩ)
)∏I

i=1 Li(Ω, ξi |data).

• [Metropolis-Hastings]

f(ξi |Σξ,Ω,data) ∝ exp
(
.5ξ′iΣ

−1
ξ ξi

)
Li(Ω, ξi | data), ∀ i.

• [Gibbs]

f(Σξ | ξ,R, df) ∼ inv-Wishart

(
I∑
i=1
ξ′iξi + dfR−1, df + I

)
.

For the Metropolis-Hastings steps, we follow the procedure proposed by Atchadé (2006) and adapt

the tuning parameters in each iteration to get an acceptance rate of approximately 20%. In the

empirical analyses reported in the paper, we ran the simulation for 500,000 iterations. The first

400,000 iterations were used as a “burn-in” period, and the last 100,000 iterations were used to

estimate the conditional posterior distributions.
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Web Appendix B: Additional Results: Empirical Application 1

B1 Additional results: Three-state specification

For ease of exposition, the main document shows the impact of changes in the covariates on the

transition probabilities. Table B1 reports the posterior estimates of the coefficients for the covari-

ates included in the state transition process of the proposed model with three states.

Variable Posterior mean 95% CPI

Lag(QualStock)
From state 1 to 1 −0.842 −2.232 0.567
From state 1 to 2 1.456 0.210 2.827
From state 2 to 1 0.975 −0.360 2.264
From state 2 to 2 0.768 −0.849 2.237
From state 3 to 1 −1.589 −2.701 −0.387
From state 3 to 2 0.777 −0.815 2.304

Number of periods since last email
From state 1 to 1 −0.038 −0.710 1.005
From state 1 to 2 −1.130 −2.639 0.638
From state 2 to 1 0.572 −0.276 1.584
From state 2 to 2 −0.437 −1.198 0.294
From state 3 to 1 0.449 −0.073 1.019
From state 3 to 2 0.114 −1.056 1.080

Table B1: Posterior means of the coefficients for the covariates included in the state tran-
sition process. Numbers in bold are associated with 95% CPIs not including 0.

B2 Results for the one-, two-, and four-state specifications

In this appendix we present the results for the one-, two-, and four-state specifications of our

proposed model. We focus on the two main sets of results: the state-specific probabilities for all

three behaviors (open, click, and unsubscribe) and the transition probabilities among the latent

states.

B2.1 Model with one state (K = 1)

We start by describing the results of the most restricted model, in which only one latent state is

allowed. As such, it is a static specification and there are no parameters governing dynamics.

3



Posterior mean 95% CPI

Prob(Open) State 1 0.286 0.268 0.304

Prob(Click) State 1 0.059 0.048 0.072

Prob(Unsubscribe) State 1 0.002 0.001 0.002

Table B2: State-dependent probabilities for the one-state model.

B2.2 Model with two states (K = 2)

We now turn to the results of the simplest dynamic specification, one with two hidden states.

Combining the results from Tables B3 and B4, and comparing them with those obtained when

three hidden states are allowed (Tables 4 and 5 in the main manuscript) we observe that a state

of high activity is identified (state 1). This state capture customers with high activity in all three

behaviors. Unlike the insights derived from the three-state specification, the model with two states

fails to separate the very engaged customers from those who open frequently, but rarely click and are

more likely to unsubscribe. The model clearly captures the state of the “silently gone” customers,

who rarely interact with the service. As we find in the three-state specification, such a state is

highly absorbing.

Posterior mean 95% CPI

Prob(Open) State 1 0.600 0.553 0.641
State 2 0.068 0.053 0.084

Prob(Click) State 1 0.178 0.135 0.229
State 2 0.026 0.011 0.043

Prob(Unsubscribe) State 1 0.003 0.001 0.005
State 2 0.001 0.000 0.001

Table B3: State-dependent probabilities for the two-state model.
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To state

From state 1 2

1 0.796 0.204
[ 0.546 , 0.987 ] [ 0.013 , 0.454 ]

2 0.040 0.960
[ 0.001 , 0.141 ] [ 0.859 , 0.999 ]

Table B4: Mean transition probabilities and the 95% heterogeneity interval of individual
posterior means for the two-state model.

B2.3 Model with four states (K = 4)

We finally consider the results of an HMM with four states and compare them with the more

parsimonious specification of an HMM with three states. Comparing Tables B5 and B6 with

Tables 4 and 5, we see that allowing additional flexibility in the model (i.e., adding an additional

state) sees the “silently gone” state in the three-state model divided into two states, both of which

are very sticky and have low probabilities of any kind of activity. Moreover, in contrast to the

three-state specification, the four-state model is not as effective at separating the “at risk” and

“engaged” states, as suggested by the distributions of clicking and unsubscribing probabilities —

they have closer posterior means and wider 95% CPIs than those obtained with the three-state

model.

Posterior mean 95% CPI

State 1 0.656 0.617 0.695
Prob(Open) State 2 0.683 0.637 0.729

State 3 0.069 0.055 0.084
State 4 0.080 0.067 0.093

State 1 0.115 0.068 0.171
Prob(Click) State 2 0.239 0.140 0.344

State 3 0.015 0.007 0.031
State 4 0.001 0.000 0.002

State 1 0.003 0.002 0.005
Prob(Unsubscribe) State 2 0.004 0.001 0.007

State 3 0.001 0.000 0.002
State 4 0.001 0.000 0.002

Table B5: State-dependent probabilities for the four-state model.

5



To state

From state 1 2 3 4

1 0.568 0.205 0.041 0.187
[ 0.128 , 0.992 ] [ 0.000 , 0.581 ] [ 0.000 , 0.080 ] [ 0.007 , 0.303 ]

2 0.186 0.370 0.265 0.179
[ 0.102 , 0.304 ] [ 0.225 , 0.588 ] [ 0.057 , 0.453 ] [ 0.087 , 0.229 ]

3 0.005 0.061 0.903 0.031
[ 0.000 , 0.013 ] [ 0.001 , 0.206 ] [ 0.715 , 0.996 ] [ 0.003 , 0.067 ]

4 0.039 0.006 0.013 0.941
[ 0.022 , 0.060 ] [ 0.004 , 0.009 ] [ 0.008 , 0.02 ] [ 0.917 , 0.964 ]

Table B6: Mean transition probabilities and the 95% heterogeneity interval of individual
posterior means for the four-state model.

B3 Benchmark model details and results

In Section 4.6 we compare the out-of-sample predictions generated by our model with benchmark

models in which each of the three behaviors — opening, clicking, and unsubscribing — are modeled

as a function of lagged covariates and/or past behavior (recency and frequency). We model each

of the three behaviors — unsubscribing, opening, and clicking — using binary logit models. More

formally,

ōit = P (Y o
it = 1) =

ez
o
itλ

o
i

1 + ez
o
itλ

o
i

(B1)

c̄it = P (Y c
it = 1) =


ez
c
itλ

c
i

1 + ez
c
itλ

c
i

if yoit = 1

0 if yoit = 0 ,

(B2)

ūit = P (Y u
it = 1) =


ez
u
itλ

u
i

1 + ez
u
itλ

u
i

if yoit = 1

0 if yoit = 0 ,

(B3)

where zoit, zcit, and zuit represent the covariates affecting each of the behaviors. Using the same logic

as in (8), the probability that customer i has observed behavior yit = [ yoit, y
c
it, y

u
it ] in period t is

P (Yit = yit) = 1(yoit = 1)ōit

{[
1(ycit = 1)c̄it + 1(ycit = 0)(1− c̄it)

]
×
[
1(yuit = 1)ūit + 1(yuit = 0)(1− ūit)

]}
+ 1(yoit = 0)(1− ōit) . (B4)
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It follows that customer i’s likelihood function is

Li(λi | data) =

Ti∏
t=1

P (Yit = yit) , (B5)

where λi contains λui , λoi , and λci (i.e., the parameters in (B1)–(B3)). As described in Sec-

tion 4.6, we consider three specifications of this model: lagged covariates, RF (no covariates) and

RF (covariates). Tables B7–B9 report the parameter estimates for these models.

Our fourth benchmark model, HMM (static) is a version of our HMM in which transitions

between states are not allowed (i.e., Qit is the identity matrix). The associated parameter estimates

are reported in Table B10.
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Behavior Variable Posterior mean 95% CPI

Open Intercept −0.895 −0.921 −0.867
Sunday 0.103 0.037 0.167
Lag(QualStock) −1.437 −1.626 −1.283
Number of periods since last email 0.089 0.035 0.143
Lag(Sunday) 0.030 −0.026 0.085
Lag2(QualStock) −0.071 −0.130 −0.010
Lag(Number of periods since last email) 0.072 0.011 0.131

Click |Open Intercept −0.907 −1.121 −0.672
Sunday −0.194 −0.335 −0.042
log(#deals) 0.495 0.331 0.665
Discount −0.056 −0.084 −0.033
Time left 0.002 0.000 0.005
Food −0.074 −0.105 −0.046
Fitness −0.039 −0.062 −0.020
Source −0.001 −0.015 0.017
Order −0.030 −0.047 −0.016
Lag(QualStock) 3.052 1.848 4.215
Number of periods since last email 0.008 −0.081 0.095
Lag(Sunday) −0.131 −0.262 −0.003
Lag(log(#deals)) 0.025 −0.084 0.139
Lag(Avg. Discount) 0.168 −0.635 0.935
Lag(Avg. Time left) −0.010 −0.026 0.008
Lag(%Food) −0.062 −0.265 0.139
Lag(%Fitness) 1.079 0.738 1.421
Lag(Avg. Source) 0.098 −0.088 0.301
Lag2(QualStock) −0.005 −0.114 0.107
Lag(Number of periods since last email) 0.006 −0.107 0.115

Unsubscribe |Open Intercept −5.149 −5.546 −4.773
Avg. Discount 1.248 0.499 1.951
Avg. Time left 0.005 −0.062 0.067
%Food 1.244 0.702 1.819
%Fitness 0.935 0.318 1.567
Avg. Source 0.164 −0.384 0.738
Sunday −0.603 −1.182 −0.003
log(#deals) −0.284 −0.654 0.093
Lag(QualStock) 1.915 0.870 2.943
Number of periods since last email 0.161 −0.171 0.446
Lag(Avg. Discount) 0.723 −0.034 1.383
Lag(Avg. Time left) −0.058 −0.165 0.031
Lag(%Food) −0.661 −1.190 −0.092
Lag(%Fitness) 0.980 0.147 1.756
Lag(Avg. Source) 0.005 −0.647 0.707
Lag(Sunday) 0.151 −0.356 0.650
Lag(log(#deals)) 0.703 0.222 1.209
Lag2(QualStock) 0.089 −0.274 0.541
Lag(Number of periods since last email) −0.090 −0.543 0.273

Table B7: Parameter estimates for the lagged covariates model. Numbers in bold are asso-
ciated with 95% CPIs not including 0.
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Behavior Variable Posterior mean 95% CPI

Open Intercept −1.980 −2.064 −1.894
reco −0.072 −0.083 −0.062
freqo 3.512 3.392 3.633
recc 0.004 −0.001 0.009
freqc −1.106 −1.275 −0.939

Click |Open Intercept −0.426 −0.587 −0.266
reco 0.052 0.030 0.075
freqo −1.733 −1.944 −1.520
recc −0.083 −0.096 −0.071
freqc 2.535 2.269 2.804

Unsubscribe |Open Intercept −4.694 −5.270 −4.143
reco 0.064 0.003 0.122
freq0 −0.636 −1.345 0.064
recc −0.002 −0.041 0.034
freqc 0.539 −0.458 1.512

Table B8: Parameter estimates for the RF (no covariates) model. Numbers in bold are
associated with 95% CPIs not including 0.
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Behavior Variable Posterior mean 95% CPI

Open Intercept −1.923 −2.010 −1.835
reco −0.078 −0.089 −0.068
freqo 3.435 3.320 3.550
recc 0.002 −0.003 0.007
freqc −0.909 −1.085 −0.731
Sunday 0.131 0.056 0.205

Click |Open Intercept −0.008 −0.248 0.236
reco 0.052 0.030 0.073
freqo −1.751 −1.951 −1.558
recc −0.082 −0.094 −0.070
freqc 2.625 2.324 2.907
Sunday −0.200 −0.333 −0.062
log(#deals) 0.409 0.262 0.562
Discount −0.019 −0.036 −0.004
Time left −0.020 −0.035 −0.005
Food 0.001 −0.001 0.004
Fitness −0.050 −0.083 −0.020
Source −0.024 −0.046 −0.007
Order 0.000 −0.003 0.002

Unsubscribe |Open Intercept −4.826 −5.426 −4.212
reco 0.064 0.001 0.123
freqo −0.697 −1.391 −0.015
recc −0.001 −0.040 0.035
freqc 0.720 −0.340 1.719
Avg. Discount 0.525 −0.653 1.725
Avg. Time left −0.006 −0.078 0.056
%Food 0.474 −0.131 1.057
%Fitness −0.144 −1.205 0.926
Avg. Source −0.080 −0.727 0.631
Sunday −0.620 −1.316 −0.022
log(#deals) −0.084 −0.392 0.240

Table B9: Parameter estimates for the RF (covariates) model. Numbers in bold are asso-
ciated with 95% CPIs not including 0.

10



Segment 1 Segment 2 Segment 3

Effect on Opening
Sunday −1.307 0.145 2.522

[ −2.449 , −0.195 ] [ 0.046 , 0.252 ] [ 1.403 , 3.520 ]
Effect on Clicking, given Opening

Sunday 0.604 −0.228 1.270
[ −0.76 , 2.02 ] [ −0.414 , −0.062 ] [ −0.429 , 2.901 ]

log(#deals) 0.100 0.740 0.826
[ −1.498 , 1.858 ] [ 0.498 , 0.982 ] [ −0.777 , 2.414 ]

Discount 0.112 0.147 −0.255
[ −0.16 , 0.506 ] [ 0.041 , 0.264 ] [ −1.291 , 0.413 ]

Time left −0.082 0.003 −0.166
[ −0.218 , 0.020 ] [ 0.000 , 0.006 ] [ −0.561 , 0.010 ]

Food 0.135 −0.125 −0.113
[ −0.102 , 0.506 ] [ −0.163 , −0.087 ] [ −0.855 , 0.511 ]

Fitness 0.022 0.148 0.412
[ −0.243 , 0.337 ] [ 0.057 , 0.242 ] [ −0.216 , 1.660 ]

Source 0.025 0.003 −0.092
[ −0.223 , 0.303 ] [ −0.035 , 0.041 ] [ −0.956 , 0.577 ]

Order −0.160 −0.056 −0.392
[ −0.347 , −0.011 ] [ −0.086 , −0.028 ] [ −1.22 , 0.012 ]

Effect on Unsubscribing, given Opening
Avg. Discount 0.057 −0.404 −0.012

[ −1.726 , 1.803 ] [ −1.898 , 1.224 ] [ −1.903 , 1.975 ]
Avg. Time left 0.081 −0.023 −0.339

[ −0.173 , 0.366 ] [ −0.127 , 0.063 ] [ −1.134 , 0.308 ]
%Food −0.334 0.765 −0.108

[ −2.096 , 1.497 ] [ −0.155 , 1.696 ] [ −1.605 , 1.449 ]
%Fitness 1.222 −2.197 −1.377

[ −0.562 , 3.14 ] [ −3.904 , −0.566 ] [ −3.529 , 0.867 ]
Avg. Source −0.702 0.068 −0.365

[ −2.568 , 1.277 ] [ −1.021 , 1.290 ] [ −2.141 , 1.566 ]
Sunday −0.216 −1.033 −0.103

[ −1.931 , 1.48 ] [ −2.096 , −0.221 ] [ −1.692 , 1.402 ]
log(#deals) −1.273 0.530 0.501

[ −2.379 , 0.017 ] [ −0.259 , 1.605 ] [ −1.687 , 2.609 ]

Table B10: Parameter estimates (posterior means) for the HMM (static) model. Numbers
in bold are associated with 95% CPIs (in brackets) not including 0.
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Web Appendix C: Additional Results: Empirical Application 2

C1 Additional results: Three state specification

In this appendix we report the results from the second empirical application that were not discussed

in the main manuscript, namely the initial state probabilities (Table C1) and the posterior estimates

of the coefficients for the covariates included in the models of state-dependent behavior (Table C2)

for the proposed model with three states.

Posterior mean 95% CPI

State 1 0.486 0.428 0.547
State 2 0.291 0.236 0.356
State 3 0.223 0.151 0.295

Table C1: Initial state probabilities.

State

“At Risk” “Engaged” “Silently gone”

Effect on Opening
Ticket −0.086 0.852 1.261

[ −0.231 , 0.064 ] [ 0.470 , 1.256 ] [ 0.731 , 1.941 ]
Donation −0.070 −0.543 −0.951

[ −0.274 , 0.146 ] [ −1.295 , 0.101 ] [ −2.361 , 0.152 ]
Effect on Clicking, given Opening

Ticket 0.331 0.357 −1.623
[ −0.160 , 0.862 ] [ −0.883 , 1.575 ] [ −2.808 , −0.377 ]

Donation −1.794 −2.277 −1.452
[ −3.021 , −0.754 ] [ −3.604 , −1.004 ] [ −3.763 , 1.090 ]

Effect on Unsubscribing, given Opening
Ticket −0.052 −1.569 0.483

[ −0.770 , 0.647 ] [ −3.621 , 0.292 ] [ −0.923 , 1.900 ]
Donation 0.724 0.937 0.450

[ −0.004 , 1.478 ] [ −1.572 , 3.120 ] [ −2.097 , 2.688 ]

Table C2: Posterior means of the effect of the covariates on the state-dependent probabili-
ties. Numbers in bold are associated with 95% CPIs (in brackets) not including 0.
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C2 Results for the four-state specification

Recall from Section 5 that the models with three and four latent states provided very similar

measures of fit. While the model with three states had the best fit in terms of MSE, the model

with four states had lower log predictive density and WAIC. In this section we present the results

of the model with four states and discuss how they differ from those obtained using the three-state

model.

Posterior mean 95% CPI

State 1 0.637 0.589 0.682
Prob(Open) State 2 0.992 0.981 0.998

State 3 0.092 0.069 0.118
State 4 0.013 0.007 0.019

State 1 0.017 0.011 0.023
Prob(Click) State 2 0.897 0.814 0.963

State 3 0.904 0.820 0.973
State 4 0.218 0.183 0.256

State 1 0.007 0.007 0.005
Prob(Unsubscribe) State 2 0.009 0.007 0.001

State 3 0.000 0.000 0.000
State 4 0.001 0.001 0.001

Table C3: State-dependent probabilities.

Comparing Table C3 with Table 12, we see that allowing additional flexibility in the model (i.e.,

adding an additional state) results in the “engaged” state from the three-state model being divided

into two states, one state in which customers open almost every e-mail (state 2) and another state

in which customers open less frequently (state 3). Moreover, if we label state 1 as “at risk” and

state 4 as “silently gone,” these two states clearly coincide in terms of customer behavior with their

corresponding states in the three-state model. The transition matrix (Table C4) is consistent with

this intuition. The transition probabilities related to the “at risk” and “silently gone” states are

consistent with those obtained in the three-state model. Regarding the two “engaged” states, the

state with very high opening behavior is not very sticky, while the other state is more stable.
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To state

From state 1 2 3 4

1 0.965 0.000 0.000 0.035
[ 0.867 , 0.998 ] [ 0.000 , 0.000 ] [ 0.000 , 0.001 ] [ 0.002 , 0.132 ]

2 0.000 0.319 0.170 0.511
[ 0.000 , 0.000 ] [ 0.149 , 0.411 ] [ 0.037 , 0.36 ] [ 0.242 , 0.800 ]

3 0.155 0.034 0.809 0.002
[ 0.013 , 0.395 ] [ 0.001 , 0.181 ] [ 0.541 , 0.983 ] [ 0.001 , 0.003 ]

4 0.000 0.001 0.002 0.996
[ 0.000 , 0.000 ] [ 0.000 , 0.003 ] [ 0.001 , 0.005 ] [ 0.993 , 0.998 ]

Table C4: Mean transition probabilities and the 95% heterogeneity interval of individual
posterior means.
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