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Appendix A: MCMC Procedure for the Proposed Model

The model is estimated using a hierarchical Bayesian framework. We obtain estimates of all

model parameters by drawing from the marginal posterior distributions, and use a data aug-

mentation approach to deal with the latent states Sit.

Let Ω denote all the model parameters, including the population parameters A, θ, q, and σβ,

the individual-level parameters β = {βi}i=1,...,I and Π = {Πi}i=1,...,I , and the set of augmented

paths of commitment states s = {s̃i}i=1,...,I . We write the full joint posterior distribution as

f(Ω|data) ∝

{

I
∏

i=1

L
usage
i (θ, βi | S̃i = s̃i, data)

}

f(s|q, Π)f(Π|A)f(β|σβ)f(σβ)f(q)f(A)f(θ) ,

where f(s|q, Π) refers to the distribution of the latent states, assumed to follow a hidden Markov

process with renewal restrictions. The term f(Π|A) corresponds to the prior (or mixing) dis-

tribution for the individual transition probabilities. Each row j of the matrix Πi is assumed

to follow a Dirichlet distribution with parameter vector [αj1, αj2, . . . , αjK ]; we let A denote the

matrix whose jth row is the vector [αj1, αj2, . . . , αjK]. The term f(β|σβ) denotes the prior (or

mixing) distribution for the βis, where βi is assumed to follow a lognormal distribution with

mean 0 and standard deviation σβ.

The terms f(σβ), f(q), f(A), and f(θ) denote the (hyper)priors for the population pa-

rameters. Uninformative (vague) priors are used for all parameters. We assume σβ has an

inverse-Gamma prior with parameter R = 0.05 and degrees of freedom df = 2. Noting that

q1 = 0, we use a Dirichlet prior with a 1 × (K − 1) parameter vector of ones for the remaining

elements of q.

We need to ensure that 0 < θ1 < θ2 < . . . < θK . We therefore reparameterize θ1 =

eγ1 and θk = θk−1 + eγk ∀ k > 1 and estimate γ = [γ1, γ2, . . . , γK] instead. For math-

ematical convenience we reparameterize αjk = eρjk ∀j, k ∈ {1, . . . , K} and estimate ρ =

[ρ11, . . . , ρ1K, . . . , ρK1, . . . , ρKK]. We assume Φ = {γ, ρ} follows a multivariate normal dis-

tribution with parameters µΦ = [3× 1K , 4× 1K2 ] and diag(ΣΦ) = [1K, (1/2)× 1K2 ], where 1n

is a 1× n vector of ones. (The values of µΦ and ΣΦ were chosen to ensure uninformative priors

in the transformed space.)
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We draw recursively from the following posterior distributions:

• [Gibbs] f(σβ|β, R, df) ∼ inv-Gamma(
I
∑

i=1
((lnβi)

2 + (df/R), df + I).

• [Gibbs] f([q2, . . . , qK ]|s) ∼ Dirichlet(1 + n02, . . . , 1 + n0K), where n0k =
I
∑

i=1
1(si1 = k).

• [Metropolis-Hastings] f(Φ|µΦ, ΣΦ, s, data) ∝ exp
(

−.5(Φ− µΦ)′Σ−1
Φ (Φ− µΦ)

)

f(data|β, Φ, s),

where

f(data|β, Φ, s) =

I
∏

i=1

f(data|βi, Φ, s̃i)

and f(data|βi, Φ, s̃i) = L
usage
i (θ, βi | S̃i = s̃i, data) with the θ → Φ mapping discussed

above. We use a Gaussian random-walk Metropolis-Hasting algorithm to draw from this

distribution; in particular, we follow the procedure proposed by Atchadé (2006) and adapt

the tuning parameters in each iteration to get an acceptance rate of approximately 20%.

• For each individual i,

– [Gibbs] For the jth row of Πi, f(πij|Φ, s) ∼ Dirichlet(αj1 + nij1, . . . , αjK + nijK),

where nijk =
Ti−1
∑

t=1
1(sit = j and sit+1 = k), where 1(·) is the indicator function that

equals 1 if the condition is met, 0 otherwise.

– [Metropolis-Hastings] f(βi|σβ , Φ, s̃i, data) ∝ exp

(

β2
i

2σβ

)

f(data|βi, Φ, s̃i).

We use a Gaussian random-walk Metropolis-Hasting algorithm to draw from this

distribution; in particular, we follow the procedure proposed by Atchadé (2006) and

adapt the tuning parameters in each iteration to get an acceptance rate of approxi-

mately 20%.

– [Gibbs] We draw from the distribution of the hidden states using the direct Gibbs

sampler approach proposed by Scott (2002) (eq(8) p.340):

P (Si1 = k|q, ṡi(1), data) ∝ qkP (Si2 = si2|Si1 = k)1(s̃i(1,k) ∈ Υi)

P (Sit = k|Πi, ṡi(t), data) ∝ P (Sit = k|Sit−1 = sit−1)

× P (Sit+1 = sit+1|Sit = k)1(s̃i(t,k) ∈ Υi),
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where ṡi(t) = [si1, ..., sit−1, sit+1, ..., siTi
] and s̃i(t,k) = [si1, ..., sit−1, k, sit+1, ..., siTi

],

and Υi is the set of possible paths through the commitment states given Ti periods.

When t = Ti, P (Sit+1 = sit+1|Sit = k) = 1.

In the empirical analysis reported in the paper, we ran the simulation for 500,000 iterations.

The first 450,000 iterations were used as a “burn-in” period, and the last 50,000 iterations were

used to estimate the conditional posterior distributions. Convergence was assessed by visual

inspection and confirmed using the Geweke (1992) convergence diagnostic.

3



Appendix B: Exploring the Model Identification with Simulations

In this appendix we present the simulation analyses that were performed to confirm the iden-

tification of the proposed model specification. We simulate and estimate multiple versions of

the full model (i.e., the model with unobserved heterogeneity in both usage and transition dy-

namics), varying the number of states (K), the initial probabilities (q), and the heterogeneity

in transition probabilities (A).

We use three sets of parameter vectors in this analysis:

Set 1: Equal initial state probabilities

Number of states
K = 2 K = 3 K = 4

q [0 1] [0 .5 .5] [0 .333 .333 .333]

A

[

20 5
5 20

]





20 5 1

5 20 5
1 5 20













20 5 1 0.1

5 20 5 1
1 5 20 5

0.1 1 5 20









θ [0.1 2] [0.1 2 5] [0.1 2 5 10]
σβ 0.1 0.1 0.1

Set 2: Unequal initial state probabilities

Number of states

K = 3 K = 4

q [0 .2 .8] [0 .1 .3 .6]

A





20 5 1
5 20 5

1 5 20













20 5 1 0.1

5 20 5 1
1 5 20 5

0.1 1 5 20









θ [0.1 2 5] [0.1 2 5 10]

σβ 0.1 0.1

Set 3: Unequal initial state probabilities with more heterogeneous transition probabilities

Number of states
K = 3 K = 4

q [0 .2 .8] [0 .1 .3 .6]

A





10 2.5 0.5
2.5 10 2.5

0.5 2.5 10













10 2.5 0.5 0.05
2.5 10 2.5 0.5

0.5 2.5 10 2.5
0.05 0.5 2.5 10









θ [0.1 2 5] [0.1 2 5 10]
σβ 0.1 0.1
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We simulate customer behavior assuming the data generating process of our proposed model

(as presented in Section 3.1) and fit the model to these simulated datasets using the model

estimation procedure described in Web Appendix A. As reported in Tables B1 to B7, the 95%

central posterior intervals (CPIs) include the simulated values for all but three of the 124 simu-

lated parameters in the seven cases considered in the simulation. (We do not report the elements

of θ and A; rather we report their reparameterizations (i.e., γ and ρ).) We therefore conclude

that the proposed model is identified.

Parameter Simulated Posterior mean 95% CPI

ρ11 3.00 3.86 [ 2.51 5.12 ]
ρ12 1.61 2.37 [ 1.06 3.64 ]

ρ21 1.61 1.58 [ 1.33 1.93 ]
ρ22 3.00 2.91 [ 2.63 3.31 ]

γ1 −2.30 −2.32 [−2.46 −2.22 ]
γ2 0.64 0.63 [ 0.61 0.65 ]

σβ 0.10 0.11 [ 0.08 0.13 ]

Table B1: Simulated and estimated values of Set 1 parameters (K = 2).

Parameter Simulated Posterior mean 95% CPI

q1 0.50 0.46 [ 0.42 0.51 ]
q2 0.50 0.54 [ 0.49 0.58 ]

ρ11 3.00 3.09 [ 2.88 3.37 ]

ρ12 1.61 1.68 [ 1.51 1.87 ]
ρ13 0.00 0.10 [−0.25 0.42 ]

ρ21 1.61 1.62 [ 1.54 1.70 ]
ρ22 3.00 2.97 [ 2.87 3.05 ]

ρ23 1.61 1.62 [ 1.51 1.77 ]
ρ31 0.00 −0.13 [−0.31 0.03 ]

ρ32 1.61 1.40 [ 1.15 1.67 ]
ρ33 3.00 2.76 [ 2.53 3.03 ]

γ1 −2.30 −2.43 [−2.54 −2.29 ]

γ2 0.64 0.62 [ 0.60 0.65 ]
γ3 1.10 1.10 [ 1.07 1.13 ]
σβ 0.10 0.10 [ 0.09 0.13 ]

Table B2: Simulated and estimated values of Set 1 parameters (K = 3).
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Parameter Simulated Posterior mean 95% CPI

q1 0.33 0.34 [ 0.30 0.38 ]

q2 0.33 0.31 [ 0.27 0.36 ]
q3 0.33 0.35 [ 0.31 0.39 ]

ρ11 3.00 2.94 [ 2.84 3.04 ]

ρ12 1.61 1.58 [ 1.47 1.69 ]
ρ13 0.00 0.00 [−0.14 0.21 ]

ρ14 −2.30 −2.38 [−2.45 −2.31 ]
ρ21 1.61 1.57 [ 1.48 1.65 ]

ρ22 3.00 2.96 [ 2.89 3.04 ]
ρ23 1.61 1.53 [ 1.42 1.63 ]
ρ24 0.00 −0.04 [−0.12 0.05 ]

ρ31 0.00 −0.04 [−0.16 0.08 ]
ρ32 1.61 1.61 [ 1.48 1.78 ]

ρ33 3.00 2.87 [ 2.76 2.98 ]
ρ34 1.61 1.53 [ 1.39 1.66 ]

ρ41 −2.30 −2.24 [−2.40 −2.08 ]
ρ42 0.00 0.01 [−0.05 0.09 ]

ρ43 1.61 1.54 [ 1.43 1.64 ]
ρ44 3.00 2.98 [ 2.93 3.04 ]

γ1 −2.30 −2.20 [−2.34 −2.05 ]

γ2 0.64 0.67 [ 0.64 0.71 ]
γ3 1.10 1.09 [ 1.03 1.14 ]

γ4 1.61 1.58 [ 1.55 1.61 ]

σβ 0.10 0.11 [ 0.10 0.13 ]

Table B3: Simulated and estimated values of Set 1 parameters (K = 4).
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Parameter Simulated Posterior mean 95% CPI

q1 0.20 0.19 [ 0.16 0.23 ]
q2 0.80 0.81 [ 0.77 0.84 ]

ρ11 3.00 2.84 [ 2.63 3.01 ]

ρ12 1.61 1.41 [ 1.15 1.62 ]
ρ13 0.00 0.08 [−0.15 0.31 ]

ρ21 1.61 1.66 [ 1.24 1.99 ]
ρ22 3.00 3.14 [ 2.66 3.52 ]
ρ23 1.61 1.63 [ 1.16 2.02 ]

ρ31 0.00 0.00 [−0.28 0.26 ]
ρ32 1.61 1.62 [ 1.37 1.82 ]

ρ33 3.00 3.03 [ 2.73 3.28 ]

γ1 −2.30 −2.23 [−2.37 −2.11 ]
γ2 0.64 0.63 [ 0.59 0.66 ]

γ3 1.10 1.09 [ 1.06 1.12 ]

σβ 0.10 0.11 [ 0.09 0.13 ]

Table B4: Simulated and estimated values of Set 2 parameters (K = 3).

Parameter Simulated Posterior mean 95% CPI

q1 0.10 0.09 [ 0.06 0.11 ]

q2 0.30 0.29 [ 0.25 0.34 ]
q3 0.60 0.62 [ 0.58 0.66 ]

ρ11 3.00 3.05 [ 2.96 3.16 ]

ρ12 1.61 1.53 [ 1.41 1.63 ]
ρ13 0.00 0.19 [ 0.05 0.36 ]
ρ14 −2.30 −2.27 [−2.55 −2.01 ]

ρ21 1.61 1.49 [ 1.32 1.71 ]
ρ22 3.00 2.89 [ 2.68 3.06 ]

ρ23 1.61 1.53 [ 1.37 1.66 ]
ρ24 0.00 0.13 [−0.22 0.49 ]

ρ31 0.00 0.17 [ 0.00 0.34 ]
ρ32 1.61 1.49 [ 1.34 1.65 ]

ρ33 3.00 2.98 [ 2.83 3.12 ]
ρ34 1.61 1.63 [ 1.42 1.85 ]

ρ41 −2.30 −2.51 [−2.69 −2.30 ]
ρ42 0.00 −0.07 [−0.25 0.07 ]
ρ43 1.61 1.46 [ 1.33 1.63 ]

ρ44 3.00 2.91 [ 2.83 3.02 ]

γ1 −2.30 −2.28 [−2.42 −2.12 ]

γ2 0.64 0.63 [ 0.60 0.67 ]
γ3 1.10 1.07 [ 1.03 1.10 ]
γ4 1.61 1.62 [ 1.60 1.64 ]

σβ 0.10 0.10 [ 0.08 0.11 ]

Table B5: Simulated and estimated values of Set 2 parameters (K = 4).
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Parameter Simulated Posterior mean 95% CPI

q1 0.20 0.19 [ 0.16 0.23 ]
q2 0.80 0.81 [ 0.77 0.84 ]

ρ11 2.30 2.33 [ 1.85 2.90 ]

ρ12 0.92 1.15 [ 0.62 1.72 ]
ρ13 −0.69 −0.67 [−1.05 −0.16 ]

ρ21 0.92 1.12 [ 0.88 1.36 ]
ρ22 2.30 2.48 [ 2.16 2.79 ]
ρ23 0.92 1.03 [ 0.68 1.31 ]

ρ31 −0.69 −0.70 [−0.86 −0.46 ]
ρ32 0.92 0.88 [ 0.64 1.10 ]

ρ33 2.30 2.33 [ 2.09 2.59 ]

γ1 −2.30 −2.32 [−2.53 −2.18 ]
γ2 0.64 0.66 [ 0.62 0.69 ]

γ3 1.10 1.08 [ 1.05 1.11 ]

σβ 0.10 0.10 [ 0.08 0.12 ]

Table B6: Simulated and estimated values of Set 3 parameters (K = 3).

Parameter Simulated Posterior mean 95% CPI

q1 0.10 0.10 [ 0.07 0.12 ]

q2 0.30 0.28 [ 0.24 0.32 ]
q3 0.60 0.62 [ 0.59 0.66 ]

ρ11 2.30 2.40 [ 2.25 2.59 ]

ρ12 0.92 1.10 [ 0.74 1.34 ]
ρ13 −0.69 −0.85 [−1.22 −0.40 ]
ρ14 −3.00 −3.10 [−3.25 −2.94 ]

ρ21 0.92 0.93 [ 0.73 1.13 ]
ρ22 2.30 2.38 [ 2.23 2.51 ]

ρ23 0.92 0.86 [ 0.70 0.99 ]
ρ24 −0.69 −0.68 [−0.91 −0.50 ]

ρ31 −0.69 −0.59 [−0.80 −0.37 ]
ρ32 0.92 0.96 [ 0.86 1.08 ]

ρ33 2.30 2.37 [ 2.25 2.53 ]
ρ34 0.92 0.98 [ 0.89 1.10 ]

ρ41 −3.00 −2.90 [−3.13 −2.69 ]
ρ42 −0.69 −0.70 [−0.95 −0.49 ]
ρ43 0.92 0.97 [ 0.71 1.19 ]

ρ44 2.30 2.29 [ 1.97 2.50 ]

γ1 −2.30 −2.23 [−2.35 −2.09 ]

γ2 0.64 0.62 [ 0.59 0.65 ]
γ3 1.10 1.09 [ 1.06 1.12 ]
γ4 1.61 1.61 [ 1.59 1.63 ]

σβ 0.10 0.10 [ 0.09 0.12 ]

Table B7: Simulated and estimated values of Set 3 parameters (K = 4).
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Appendix C: Model with Seasonal Dummies and Time Trend

In this appendix we present the results for alternative model specifications that allow for sea-

sonality and a time trend in the usage process.

Model with seasonal dummies: We first estimate a model in which we allow for seasonality

in usage behavior. Recalling the discussion in Sections 3.1 and 3.3, we replace (5) with

λit | [Sit = k] = θkβi exp(δ1d1t + δ2d2t + δ3d3t) , (C1)

where d1t = 1 if t corresponds to the first quarter of the year, 0 otherwise, d2t = 1 if t corresponds

to the second quarter of the year, 0 otherwise, etc.

Table C1 reports the posterior means and 95% central posterior intervals (CPIs) for the

parameters of the usage model under the three-state specification (cf. Table 3), Table C2 reports

the posterior estimate of q (cf. Table 4), and Table C3 reports the average and 95% interval of

the individual posterior means of the transition probabilities (cf. Table 5).

Parameter Posterior mean 95% CPI

Usage θ1 0.21 [ 0.19 0.23 ]

Propensity θ2 0.22 [ 0.20 0.24 ]
θ3 1.19 [ 1.11 1.27 ]

Heterogeneity σβ 0.91 [ 0.85 0.98 ]

Quarterly dummies exp(δ1) 0.84 [ 0.80 0.90 ]

exp(δ2) 0.88 [ 0.84 0.93 ]
exp(δ3) 1.04 [ 0.98 1.10 ]

Table C1: Usage parameters for the model with seasonality in the usage process.

Parameter Posterior mean 95% CPI

q1 0.00 - -
q2 0.41 [ 0.33 0.48 ]
q3 0.59 [ 0.52 0.67 ]

Table C2: Initial-state parameters for the model with seasonality in the usage process.

Table C4 compares the accuracy of the usage forecasts from the specification with seasonality

in the usage process with those of the proposed model for period 12 (cf. Table 7) and periods
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To state

From state 1 2 3

1 0.663 0.332 0.004

[ 0.659 0.668 ] [ 0.328 0.336 ] [ 0.004 0.005 ]
2 0.299 0.436 0.266

[ 0.127 0.580 ] [ 0.276 0.735 ] [ 0.111 0.549 ]
3 0.084 0.206 0.711

[ 0.017 0.173 ] [ 0.050 0.309 ] [ 0.555 0.933 ]

Table C3: Mean transition probabilities and the 95% interval of individual posterior

means for the model with seasonality in the usage process.

14–16 (cf. Table 9). The inclusion of seasonality effects in the usage process does not lead to

any improvement in the accuracy of the usage forecasts.

Table C5 compares the accuracy of the renewal forecasts associated with these two model

specifications (cf. Table 8). The results are mixed. The specification with seasonality in the

usage process is slightly more accurate in terms of predicting total churn, but has a lower hit

rate.

Aggregate Disaggregate Individual

(% error) (χ2) (MSE)

Period 12:
Proposed model −7.2 6.5 1.4

Seasonality −13.5 17.8 1.5

Periods 14–16:

Proposed model 2.4 16.0 3.1
Seasonality 7.0 16.2 3.4

Table C4: Assessing the accuracy of usage forecasts.

Period 13 Period 17

Renewal Hit Renewal Hit
Rate % error Rate Rate % error Rate

Proposed model 88% 2.7 78% 91% 0.5 68%

Seasonality 87% 1.8 77% 90% −0.4 67%

Actual 86% - - - - 91% - - - -

Table C5: Assessing the predictions of period 13 and 17 renewal.
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Taken together, we conclude that, in this particular case, there is no substantive benefit

associated with an alternative specification that allows for seasonality in the usage process.

Model with seasonal dummies and time trend: We extend the seasonality in usage model

by including a parameter to capture any possible trend in usage behavior. This sees us replacing

(C1) with

λit | [Sit = k] = θkβi exp(δ1d1t + δ2d2t + δ3d3t + δ4t) , (C2)

where δ4 is a parameter that captures any time trend.

We find that while the additional trend parameter is positive (posterior mean: 0.005), it

does not have any significant impact on usage behavior (95% CPI: [−0.002, 0.013]). The rest

of the parameters are consistent with the previous results.
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Appendix D: Alternative Model Specifications

The proposed model assumes that, conditional on the underlying state, the usage behavior

of interest is characterized by the Poisson distribution. In some settings, usage per period

is a discrete quantity with an upper bound and may be better characterized by the binomial

distribution. In other settings, the usage behavior of interest is a non-negative continuous

quantity and should be characterized by distributions such as the gamma or lognormal. We now

consider how the model specification can be changed for these alternative settings.

D1 Binomial Specification for the Usage Model

For each customer i we have a total of Ti usage observation periods. Let mt denote the number

of transaction opportunities (e.g., number of days) in usage observation period t, yit be customer

i’s observed usage in period t, and pit the probability of a transaction occurring at any given

transaction opportunity for customer i in period t. As with the Poisson specification, the

transaction probability depends on the individual-specific time-invariant parameter βi and the

commitment state at every period:

pit | [Sit = k] = θβi

k . (D1)

We impose the restrictions that 0 < θk < 1 for all k, and that the θks increase with the

level of commitment (i.e., 0 < θ1 < θ2 < . . . < θK < 1). The usage propensity parameter βi is

assumed to follow a lognormal distribution with mean 0 and standard deviation σβ . The inclusion

of βi as an exponent (as opposed to a multiplier) ensures that the transaction probabilities

remain bounded between zero and one. (As this transformation is not linear in βi, the average

transaction probability across all customers belonging to state k is not equal to θk; this quantity is

found by taking the expectation of θβi

k over the distribution of βi.) This specification guarantees

that the transaction probability is increasing with the level of commitment.

Recalling that S̃i = [Si1, Si2, . . . , Si Ti
] denotes the (unobserved) sequence of states to which

customer i belongs during her entire lifetime, with realization s̃i = [si1, si2, . . . , si Ti
], the cus-

tomer’s usage likelihood function is
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Lusage
i (θ, βi | S̃i = s̃i, data) =

Ti
∏

t=1

P (Yit = yit |mt, Sit = sit, θ, βi)

=

Ti
∏

t=1

(

mt

yit

)

(

θ βi
sit

)yit
(

1 − θ βi
sit

)mt−yit , (D2)

where θsit
takes the value θk when individual i occupies state k at time t (i.e., sit = k).

D2 Continuous Usage Process

As previously noted, the gamma and lognormal distributions are natural candidates for accom-

modating a continuous usage process. We propose these distributions because (i) they ensure

that usage is never negative, and (ii) cross-sectional heterogeneity in average usage can easily

be accommodated by linking their parameters to the individual-level parameter βi. We would

use the following usage likelihood function:

Lusage
i (θ, βi | S̃i = s̃i, data) =

Ti
∏

t=1

f(yit | Sit = sit, θ, βi) , (D3)

where f(yit | Sit = sit, θ, βi) is the gamma or lognormal pdf and there exists some function

h(θsit
, βi) that maps the individual-specific time-invariant parameter βi and the commitment

state at every period sit to the parameters of the chosen distribution (i.e., the equivalent of

(5) and (D1)). In cases where we have individuals with zero-valued observations in several

periods, a mixture model combined with the gamma or lognormal distribution could be used to

accommodate the non-positive observations (Yoo 2004).
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Appendix E: Further Validation Analysis

We further assess the validity of the proposed model by looking at the relationship between the

observed behaviors and the states to which customers are assigned.

• Standing at the end of time t, we create three groups of customers: (1) those whose usage

in both the current and last period was below their individual average (computed across

periods 1 to t − 2), (2) those whose usage in the current period was below their average

(but not in the period before that), and (3) the rest of customers, for whom usage in the

current period was at or above their average.

• We then compute, for each group, the probability of being assigned to each state. So as

to emphasize the distinction between states 1 and 2, we also compute the ratio between

the probability of being assigned to state 1 and the probability of being assigned to state

2 for each customer group; this captures the relative probability of churning.

• Finally, we relate this information to observed churn behavior and compute, for each group,

the proportion of customers who actually churned, and within the churners, the proportion

who churned from state 1, state 2, and state 3.

The following two tables report these results for the case of t = 8. (We also considered the

case of t = 4 and obtained similar results.)

We see from Table E1 that the probability of being assigned to state 1 is highest when

the customer’s usage in the last two periods is below their individual average, and it decreases

monotonically as customers show higher levels of usage in recent periods. We note that the ratio

of the probability of belonging to state 1 to that of belonging to state 2 is much higher—almost

double —when customers have exhibited lower than average levels of usage for two periods in a

row.

We observe in Table E2 that the churn rate is highest for those customers whose usage in the

previous two periods is below their individual average. Looking across the last three columns, we

observe how individuals assigned to state 1 have much higher churn rates than those customers

assigned to state 2; this difference is especially pronounced for those customers in the “below

average in periods t − 1 and t” group.
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Observed usage is % Assigned % Assigned % Assigned % state 1 /
below average to state 1 to state 2 to state 3 % state 2

in periods t − 1 and t 24 48 28 0.51

in just period t 11 40 49 0.27
for neither period 8 25 67 0.34

Table E1: The relationship between state membership in period t and relative usage.

Observed usage is Observed % Churning % Churning % Churning
below average churn from state 1 from state 2 from state 3

in periods t − 1 and t 25% 72 24 4
in just period t 11% 62 31 7
for neither period t 11% 55 21 24

Table E2: The relationship between churn in period t + 1 and relative usage.

These results provide evidence of the validity of the latent states inferred by the proposed

model.
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Appendix F: Estimating the RFM-based Benchmark Models

Within both academic and practitioner circles, there is a tradition of building regression-type

models for predicting churn and, to a lesser extent, usage (or related quantities). In this ap-

pendix, we describe the specification of the benchmark regression models used in our analyses.

As previously noted, the regressions model the behavior of interest as a function of the

customer’s past behavior, frequently summarized in terms of her RFM characteristics. We

operationalize these RFM characteristics in the following manner. Recency is defined as the

number of periods since the last usage transaction. Frequency is defined as the total number of

usage transactions in the previous four periods. We also compute another measure of frequency,

Fsum, which is the total number of transactions (to date) per customer over the entire period

of interest. Monetary value is the average expenditure per transaction, where the average is

computed over the previous four periods. We also compute Msum, the customer’s total spend (to

date). (In exploring possible model specifications, we also consider logarithmic transformations

of these variables, as well as interactions between the RFM measures.)

Perhaps the most common approach to developing a churn model is to use a cross-sectional

logistic regression with the last renewal observation as the dependent variable and RFM measures

as covariates. In developing such a benchmark model, we select the specification that provides

the most accurate in-sample hit-rates. The associated parameter estimates are given in Table F1.

We note that the recency variable is not a significant predictor by itself, although its interaction

with frequency is significant.

Coef. Std. Err.

Intercept 0.746 0.294
Recency 0.016 0.076

Fsum 0.058 0.017
Msum 0.002 0.000

Recency×Fsum −0.071 0.015
Frequency×Monetary value −0.002 0.000

LL −327.4

Table F1: Parameter estimates for the cross-sectional logistic regression model.
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Given the nature of the usage data, we use a Poisson regression model with a normal random

effect to account for the observed overdispersion in the data. We select those individuals that

were still members at the end of our calibration period, using the number of transactions in the

last period (t = 11) as the dependent variable and the RFM measures as predictors (Table F2).

We note that the frequency variable is not significant, although its interaction with recency is

significant and positive. In other words, this model suggests that the extent to which recency is

correlated with future purchasing depends on the past purchasing rate of each individual.

Coef. 95% CPI

Random effect
µ 0.003 [−0.562 0.952 ]

σ2 0.644 [ 0.509 0.820 ]
Recency −0.404 [−0.470 −0.348 ]
Frequency −0.020 [−0.056 0.022 ]

Monetary value 0.001 [−0.001 0.002 ]
Recency×Frequency 0.068 [ 0.028 0.103 ]

Log marginal density −783.8

Table F2: Parameter estimates for the cross-sectional Poisson regression model.

Noting that our dataset has multiple observations per individual, not just the information

for the most recent period, we can extend the cross-sectional models and estimate longitudinal

models using (where available) more than one observation per customer. We estimate a logistic

regression model using observed renewal behavior for all the periods, not just the most recent

one; this gives us several observations for those customers that have renewed at least once. We

allow for unobserved heterogeneity in renewal behavior using a normal random effect. Table F3

shows the parameter estimates for the (longitudinal) random-effects churn model. The sign

and magnitude of all covariates are consistent with the results obtained in the cross-sectional

specification. (Note that the variance of the random effect is not significant.)

Similarly, we estimate a random-effects (panel) Poisson regression model using transaction

behavior from all preceding periods —see Table F4. The results are consistent with those ob-

tained in the cross-sectional model, with the only exception that the frequency variable now is

significant by itself and the interaction of recency with monetary value is significant.
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Coef. Std. Err.

Random effect

µ −0.084 0.176
σ2 0.000 0.152

Recency 0.091 0.049
Frequency 0.059 0.030

Msum 0.003 0.000
Recency ×Frequency −0.099 0.027

Recency ×Monetary value −0.001 0.000
Frequency×Monetary value −0.003 0.000

LL −775.6

Table F3: Parameter estimates for the panel logistic regression model.

Coef. 95% CPI

Random effect

µ −0.085 [−1.250 1.694 ]
σ2 0.998 [ 0.863 1.149 ]

Recency −0.211 [−0.233 −0.192 ]
Frequency −0.033 [−0.042 −0.025 ]
Monetary value −0.004 [−0.006 −0.003 ]

Recency×Frequency 0.039 [ 0.030 0.047 ]
Recency×Monetary value 0.001 [ 0.000 0.001 ]

Log marginal density −8,085.9

Table F4: Parameter estimates for the panel Poisson regression model.
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Appendix G: Estimating the Bivariate Model

As discussed in Section 4.3 of the paper, another way to model our data is to use a Tobit-type

model. Given that customers need to be “under contract” in order to use the service, we can

relate usage observations to renewal behavior as in a Type II Tobit model and therefore correct

for a possible selectivity bias. Such an approach would assume the existence of two latent

variables—one driving renewal decisions, the other usage — instead of the single latent variable

our proposed model assumes.

This approach can be seen as an extension of the traditional Type II Tobit model (Wooldridge

2002, p. 562), and is similar to the model used by Reinartz et al. (2005) to model customer

profitability while correcting for acquisition, and the extensions of the Tobit models presented

in Blattberg et al. (2008, pp. 391–392) to model censored data with selection effects. The two

main differences between our setting and theirs is that our selection variable (renewal) occurs

every n periods instead of just once (acquisition or adoption), and that our variable of interest

is not continuous (number of transactions). As a consequence, we cannot make use of existing

statistical routines, but we can adapt the likelihood function to accommodate these two changes.

In order to account for nonstationarity in the usage and renewal decisions, we also incorporate

the effects of past usage in both equations. We add linear and quadratic terms for the effect of

lagged usage so as to capture potential nonlinear effects. More formally, the model is specified

as follows.

Usage behavior: While under contract, a customer’s usage behavior is observed every period.

We assume that the number of transactions for individual i in period t follows a Poisson distribu-

tion with parameter λit, which is determined by an individual-level parameter, the (non-linear)

effect of past usage (yit−1), and an unobserved random shock:

λit = exp(µi + δ1yit−1 + δ2y
2
it−1 + εit) , for t = 1, 2, 3, . . . , (F1)

where µi is normally distributed across the population with parameters (µ̃, σµ).
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Renewal behavior: At the end of each contract period, the customer makes the decision of

whether or not to renew her membership. She renews with probability pit, which is specified as

pit =
eω+δ3yit−1+δ4y2

it−1
+νit

1 + eω+δ3yit−1+δ4y2

it−1
+νit

, for t = n, 2n, 3n, . . . (F2)

That is, renewal behavior is determined by the (non-linear) effect of past usage and an unob-

served random shock.1

In order to capture the potential relationship between usage and renewal decisions (hence

correcting for any selection effect), we allow the two random shocks to be correlated in the

following manner:







εit

νit






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
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0

0


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,
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



σ2
ε ρσεσν

ρσεσν σ2
ν












,

where σε is set to 1 to ensure identification.

We estimated the model in a Bayesian manner using the freely available WinBUGS software.

Uninformative (vague) priors were used for all parameters in the model. We ran the simulation

for 600,000 iterations. The first 500,000 iterations were used as a“burn-in” period, and the last

100,000 iterations were used to estimate the conditional posterior distributions. We examined

the convergence of the parameters by visual inspection. The Geweke convergence diagnostic also

confirmed that the parameters had converged. The posterior means and 95% CPIs are reported

in Table F1.

We note that there is no significant effect of past usage on current usage (as captured by δ1

and δ2). However, the relationship between past usage and renewal behavior is significant and

non-linear. This later result should come as no surprise as it has been well documented in the

CRM literature (e.g., Blattberg et al. 2008). We note that this relationship exists above and

beyond common temporary shocks affecting usage and renewal decisions.

1
ω does not have subscript i because we are unable to identify unobserved heterogeneity in this parameter.
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Parameter Posterior mean 95% CPI

µ̃ 1.294 [ 1.154 1.435 ]

σµ 1.052 [ 0.993 1.113 ]
δ1 0.004 [−0.013 0.021 ]

δ2 0.000 [−0.000 0.001 ]
ω −0.735 [−0.808 −0.662 ]
δ3 0.387 [ 0.279 0.502 ]

δ4 −0.008 [−0.012 −0.005 ]
σν 0.482 [ 0.442 0.521 ]

ρ 0.631 [ 0.360 0.855 ]

Table F1: Parameter estimates for the model with two latent variables.

In the spirit of Borle et al. (2008), we also considered a more complex model in which linear

and quadratic effects of time (i.e., t and t2) were added to (F1) and linear and quadratic effects of

cumulative renewal occasions (i.e., t/n and (t/n)2) were added to (F2). None of these additional

parameters were significant.
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