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Eva Ascarza

Web Appendix

In this appendix I present a set of additional results that were not incorporated in the

main manuscript due to space limitations.

A1 Details about LIFT and RISK models

A1.1 Uplift (i.e., LIFT) model

I estimate the LIFT model using the uplift random forest algorithm proposed by Guelman

et al. (2015), which combines approaches previously used for tree-based uplift modeling

(Rzepakowski and Jaroszewicz 2012) with machine learning ensemble methods (Breiman

2001). Like traditional random forests, this algorithm grows an ensemble of trees, each of

them built on a (random) fraction of the data. Each tree is grown by randomly selecting a

number of variables (among all the available covariates) for splitting criteria.

The trees grow as follows: First, the split rule is chosen to maximize a measure of

distributional divergence on the treatment effect (Rzepakowski and Jaroszewicz 2012). In

other words, each split (or partition of the data) maximizes the difference between the

differences in churn probabilities between treatment and control individuals in each of the

two resulting subtrees. Second, each tree will keep growing until the average divergence

among the (resulting) subtrees is smaller than the divergence of the parent node. More

specifically, let CRΩ be the churn rate (i.e., proportion of customers churning) in a partition

of the population Ω. I denote Ωt and Ωc the group of treated and control individuals in that

partition, and Ω1 and Ω2 the subtrees resulting from splitting Ω. For ease of illustration,

let us consider Euclidian distance as divergence measure. For each tree of the ensemble, the

algorithm works as follows:

1

W
eb

 A
pp

en
dix



• First, the algorithm picks the split such that (CRΩt
1
− CRΩc

1
)2 − (CRΩt

2
− CRΩc

2
)2 is

maximized.

• Second, the tree stops growing when
∑

i=1,2(CRΩt
i
− CRΩc

i
)2)/2 < (CRΩt − CRΩc)2.

Once all the trees are grown, the predicted treatment effect is obtained by averaging

the ‘uplift’ predictions across all trees of the ensemble, which corresponds to the expected

treatment effect given the observed covariates.

Regarding divergent criteria, I tested (1) the Kullback-Leibler (KL) distance or Relative

Entropy, (2) the L1-norm divergence, and (3) the Euclidean distance.1 While they all pro-

vided similar performance, L1 did marginally better for the first application and KL did

slightly better for the second application. The results reported in the manuscript use the

best fitting criteria for each application. (I replicated the full analysis using the other metrics

and obtained very robust results.) Regarding the number of trees, I vary the number of trees

from 10 to 200 in intervals of 10. The (out-of-sample) model fit notably increased as the

number of trees increased, with a marginal improvement after having reached 80–100 trees.

Hence, I chose 100 trees for both applications. Finally, to avoid having very few observations

in a final node (which could result in unstable results due to outliers), I set the minimum

criteria to split to 20 observations.

The R code used for the empirical application is made available as a supplemental file.

A1.2 Churn (i.e., RISK ) model

I tested multiple approaches to estimate the churn scoring model, including GLM, random

forests, and SVMs. To select the best RISK model I perform a 10-fold cross-validation in

which the calibration data is randomly partitioned into 10 equal sized subsamples such that

9 subsamples are used as training data and the remaining subsample is used for testing

the model. The cross-validation process is repeated 10 times such that each subsample

is used once as the testing data. Importantly, I do not use the validation sample (i.e.,

1See Rzepakowski and Jaroszewicz (2012) for a description of such metrics.
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the 50% of customers selected in Step 1) to evaluate the model performance or as any

source for model selection. As metric for accuracy I use the area under the curve (AUC) of

the receiver operating characteristics (ROC). The best performing method was the LASSO

approach combined with a GLM model, which provides an AUC of .907 for the first empirical

application and an AUC of .658 for the second application. Following Tibshirani (1997), I

standardized all variables before estimating the model.

A2 Robustness of the results with different specifications of the

RISK model

A2.1 Using the same model approach (i.e., random forest) to estimate RISK

and LIFT

In addition to run the full analysis with the best performing method (as presented in the

main manuscript), I also replicated the analysis by using the RISK estimates from the best

performing random forest. The rationale behind this analysis was to estimate both RISK

and LIFT using the same modeling approach. Below I recreate the figures appearing in

the main manuscript corresponding to the heterogeneity in treatment effect (Figures 3a and

3b), the impact of the campaign (Figures 4a and 4b), and the level of overlap between the

two metrics (Figures 5a and 5b).
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(c) Level of overlap across groups defined by
top RISK deciles vs. top LIFT deciles

Figure A1: [Study 1] Replication of treatment effect (TE), impact of the campaign (IC),
and overlap results using random forest to estimate both RISK and LIFT.
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Figure A2: [Study 2] Replication of treatment effect (TE), impact of the campaign (IC),
and overlap results using random forest to estimate both RISK and LIFT.
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A2.2 Increasing the number of observations for the RISK model

The impact of targeting based on RISK or LIFT ultimately depends on the accuracy of the

models used to predict customer RISK or LIFT. For example, even if customers should be

targeted based on LIFT, it could be possible that the LIFT model is not good enough to

accurately predict customers’ LIFT, making it impossible for me to show such a relationship

in the data. (Ditto for the RISK approach.) Therefore, given that I calibrate RISK and

LIFT models (Step 3) using different sample sizes, it could be possible that the LIFT

approach dominates the RISK approach because the latter model is calibrated on a smaller

sample, making it, potentially, less accurate. This is unlikely given the great accuracy of

the RISK model (as reported in Section A1.2, the AUC for the first and second applications

were .907 and .658, respectively).

Nevertheless, I corroborate empirically that the superior performance of the LIFT ap-

proach is not driven by the size of the data used to calibrate the RISK model. In particular,

I replicate the main analysis (Section 4.3) increasing the size of the data used in the RISK

estimation (i.e., altering Step 3 in Figure 3). More specifically, I do the following:

1. I calibrate the RISK model (Step 3) using all control observations (3,587 observations

for the first application and 1,056 for the second application). The AUC using the full

sample was .916 for the first application and .681 for the second application.

2. Using that model, I predict RISK for the observations in the validation sample (Step

4). Note that I am using some of the observations twice, once to calibrate the model

and then to predict RISK, thus increasing the accuracy of the RISK model.

3. I evaluate the effect of the retention campaign by deciles of RISK (Step 5).

I then compare the effect of the retention campaign for the RISK (overly-accurate ap-

proach) with the LIFT (as obtained in the main manuscript). Below I recreate the figures

appearing in the main manuscript corresponding to the heterogeneity in treatment effect

(Figures 3a and 3b), the impact of the campaign (Figures 4a and 4b), and the level of
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overlap between the two metrics (Figures 5a and 5b)). As the figures show, the results

remain unchanged, verifying that the superiority of the LIFT approach is not driven by the

difference in sample size when calibrating each of the models.
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Figure A3: Replication of treatment effect (TE) and Impact of the campaign (IC) results
using the full sample to calibrate the RISK model
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A3 Additional analyses/results

A3.1 Predicted vs. acual LIFT

In this appendix I compare predicted and actual LIFT by comparing, by decile, the average

LIFT —as predicted by the causal uplift model—with the magnitude of the treatment

effect—computed as the difference in observed churn rates between control and treated

observations. With reference to Figure A4, I observe that predicted LIFT (green circles)

accurately estimates the magnitude to actual LIFT (blue squares). Not surprisingly, the

intervals around those estimates are wider for the actual data than for the estimates.
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Figure A4: Predicted vs. actual LIFT. Green (circles) represent the average pre-
dicted LIFT, representing the expected treatment effect in each decile.
Blue (square) represtent the (actual) average treatment effect in each
decile.
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A3.2 Results for one iteration

In this appendix I show the results for one single iteration. The iteration was randomly

chosen in R. I draw from an Uniform(0,1), multiply that number by 1000 (as the number

of iterations in the main analysis), and took the integer number closes to that figure. I

performed this procedure just once. While the figures are less smooth (not surprisingly, due

to the aggregation), I observe that all patterns of the results are very similar to those obtain

when aggregating across iterations. In particular, Figure A5 corresponds to Figures 2a, 2b, 3a

and 4a from the main manuscript.
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Figure A5: [Study 2] Analysis of churn rates, treatment effect (TE), and impact of the
campaign (IC), for one iteration.
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A3.3 Differences between customers’ RISK and LIFT (results for all variables)

In the main manuscript I only discuss the most relevant variables for each application. In

this appendix I present the result for all variables used in the estimation. For the first

application I have 37 variables (consisting on the ones described in the main manuscript and

multiple dummy variables indicating whether the customer was participating in some specific

plans the the focal company offers) and the second application has 50 variables (consisting

on the variables described in the main manuscript, interactions between them, and dummy

variables indicating the region in which the customer was registered).

13

W
eb

 A
pp

en
dix



●

●

●

●

●

●

●

●

●
●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 1
●

●

●

●

●

●

●

●
●

●−1

0

1

109 8 7 6 5 4 3 2 1

High <−> Low

Var 2

●

●

●

●

●

●

●

●
●

●

−1

0

1

109 8 7 6 5 4 3 2 1

High <−> Low

Var 3
●

●

●
●

● ●
●

●
●

●

0

1

109 8 7 6 5 4 3 2 1

High <−> Low

Var 4

● ● ● ● ● ●

●

●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 5

● ● ●
●

●

●

●

●
●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 6

●

●
●

●
●

●

●

●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 7
●

●

●

●

●

●

●
● ●

●

0

1

109 8 7 6 5 4 3 2 1

High <−> Low

Var 8

●

●

●

●

●

●

●

●

●

●0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 9

●

●
●

●

●

●

●

●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 10

●

● ●

●

●

●

●

●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 11

●

●

●

●

●

●

● ●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 12

●

● ●

●

●

●

●
●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 13

●

●
●

●

●

●

● ●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 14

●

● ● ● ● ●
● ●

●

●0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 15

●

● ●

●

● ● ● ●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 16

●

●

●

●

●

● ●
●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 17

●

● ●

●

●

●

●
●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 18

●

● ●

●
●

● ●
●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 19

●
●

●

●

●

●

● ●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 20

● ● ● ●
●

● ●
●

●

●

0

1

109 8 7 6 5 4 3 2 1

High <−> Low

Var 21

● ● ●

●

●

●

● ●

●

●

0

1

109 8 7 6 5 4 3 2 1

High <−> Low

Var 22

●

●

●

●

●

●

●

●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 23

●

●

●

●

●

●

●

●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 24

●

●

●

●

● ●

●

●
●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 25

●

●

●

●

●

●
●

●

● ●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 26

● ● ●
●

●
● ●

●

●
●

0

1

109 8 7 6 5 4 3 2 1

High <−> Low

Var 27

●

●

●

●

●

●
●

●

●

●
0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 28

●

●
●

●

●

●
●

● ●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 29

●

●

●

●

●

● ●

●

●
●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 30

●

●

●

●
●

●

● ●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 31

● ●

● ● ●

●

●

●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 32

●

●

●

●

●
●

●
●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 33
●

● ●
●

●
● ● ● ● ●

0

1

109 8 7 6 5 4 3 2 1

High <−> Low

Var 34

●

●

●

●

●

●

●

●

●

●0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 35

●

●

●

●

●

●

●
●

●

●

0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 36

●

● ●
●

● ● ●
●

●

●
0

109 8 7 6 5 4 3 2 1

High <−> Low

Var 37

Method

●

LIFT

RISK

Figure A6: [Study 1] Observed characteristics as a function of LIFT and RISK deciles
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Figure A7: [Study 2] Observed characteristics (variables 1–25) as a function of LIFT and
RISK deciles
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Figure A8: [Study 2] Observed characteristics (variables 25–50) as a function of LIFT and
RISK deciles
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A3.4 Simulation study

I conduct a simulation analysis to explore how different levels of correlation between RISK

and LIFT correspond to the level of overlap, as reported in the main manuscript. I assume

a market context with N = 5, 000 customers and firm that is trying to prevent churn among

them. Customers have an intrinsic propensity to churn (i.e., RISK ) that is heterogenous

across the population. The probability that a customer will churn in the next renewal

occasion can be altered if the person receives an incentive. Customers are also heterogeneous

in the way the respond to the incentive. In particular, I simulate each customer propensity

to churn as follows

Churni =


1 if ChurnPropensityi >= 0

0 if ChurnPropensityi < 0

where

ChurnPropensityi = Xi − ZiMktgi + εi.

The term Xi represents the intrinsic (or baseline) propensity to churn (i.e., RISK), Mktgi is

a dummy variable that takes value 1 if customer i gets a retention incentive, 0 otherwise, the

term Zi captures the individual sensitivity to the treatment (i.e., LIFT), and εi is assumed

normally distributed with mean 0 and variance 1.

I vary the values ofXi and Zi to cover a variety of business contexts—firms with high/low

levels of churn as well as effective/ineffective marketing interventions. For example, a cus-

tomer with very high Xi is likely to churn; but such churn can be prevented by a marketing

action (mktgi = 1) if Zi is very low (or “very” negative). Finally, I allow for different levels

of correlation between RISK and LIFT by jointly drawing the individual quantities Xi and
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Zi as follows Xi

Zi

 ∼ MultivariateNormal

0

0

 ,

1 ρ

ρ 1

 . (A1)

The term ρ captures correlation between Xi and Zi, which I vary from −1 to 1, in

intervals of .2. Figure A9 shows the level of overlap for all levels of ρ. Comparing these

figures with those obtained in the empirical applications, it seems that in the first context

(telecommunications) the correlation betweenRISK and LIFT is close to .2. Similarly, the

resulting treatment effects (Figure A10) are very similar to those obtained using the real

data. Comparing the results from the second application (special interest membership), the

correlation between RISK and LIFT is clearly negative, possibly around −.2.
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Figure A9: Level of overlap across groups defined by top RISK deciles vs. top LIFT
deciles.The (dotted) 45◦ line represents the level of overlap if there was no
relationship between the two groups
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Figure A10: Treatment effect (TE) for different group deciles, depending on whether cus-
tomers are grouped by levels of RISK (represented by the squares) or LIFT
(represented by the circles). The dotted (straight) line corresponds to the
average effect of the campaign if the firm targeted randomly
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A3.5 Value-LIFT

I leverage the first application to show the results of targeting a retention campaign on the

basis of a restricted version of Value-LIFT. In this case, because the focal company was

mainly interested in retention, I could not obtain data on customer profitability after the

campaign, thus I cannot observe the change, if any, in customer expenditure. Furthermore,

I only obtained retention behavior for the period right after the intervention, preventing me

from estimating the impact of the campaign beyond the period of study. Therefore, for the

purpose of this exercise, I define Value-LIFT= λiLIFT i, where λi is the level of expenditure

during the month prior to the campaign.2 I perform the analysis as described in Section ??

with the main difference that now, when I measure the effect of the campaign, I do not

only sum the number of customers that were retained (in each decile) but I also sum all

their expenditures. As a comparison, I also compute the effect of the intervention if the

company were to target by levels of current expenditure. This comparison is prompted by

the common practice of targeting “high value customers” without considering the impact

of the intervention in their future value.3 Figure A11 shows the effect of the campaign,

measured as the difference in revenues between control and treated customers, by levels of

Value versus Value-LIFT. From the figure, I can observe that the customers with highest

Value-LIFT (and not those with highest Value) are those for whom the intervention will be

most beneficial to the firm. I also quantify what the overall impact of the campaign would

be if the company targeted top 10% value customers, top 20% value customers, and so forth.

The results (bottom figure) corroborate the claim that companies would notably improve

the impact of their campaigns by targeting customers with highest Value-LIFT rather than

those with high current value.

2Note that because I only consider the period after the campaign, Value-LIFT is a linear function of LIFT. This is likely
not to be the case when one incorporates behavior from future periods.

3In this application I abstract from computing the discounted value of all future transactions (i.e., computing actual customer
lifetime value), as applying such metric would require making several assumptions that are not easily tested in this setting and
are not critical for the purpose of this research.
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Figure A11: [First empirical application] Customers are grouped by levels of Value (repre-
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(straight) line corresponds to the impact of the campaign if all customers were
targeted)
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A3.6 Simulation results for different churn rates

The churn rates for Studies 1 and 2 are 44% and 62%, respectively. Other industries generally

face lower churn rates, (e.g., 12% annual churn rate for post-paid customers in telecommuni-

cations, 10% pay-TV or streaming services), implying that, by its own nature, the treatment

effect of any intervention cannot be very large. In that case, the potential gain of using a

better method for targeting will likely be lower than what I find in both studies, where there

was a lot more “room for improvement.” Nevertheless, that does not mean that the LIFT

approach will not help companies with lower churn rates than the ones reported here. To

the extent that a firm’s intervention can have an effect reducing churn, and to the extent

that there will be heterogeneity in the customer base, the LIFT approach identifies those

customers that the firm should give priority.

I corroborate this intuition via simulations. Using the same approach as in Web Ap-

pendix A3.4, I simulated four environments which have churn rates of 50%, 25%, 10% and

5%. In all cases I assumed the firm runs a randomized intervention of exact same character-

istics. I obtained the expected result: As the churn rate decreases (from 50% down to 5%),

the benefit of using LIFT approach v RISK decreases, on average. However, regardless of

the churn rate, using LIFT is always superior as it identifies customers who will be more

sensitive to the treatment. These results are shown in Figure A12.
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Figure A12: Treatment effect (TE) for simulated data. Varing churn rate from 50%
(Top left) to 5% (Bottom left)
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