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Abstract. Firms are increasingly interested in developing targeted interventions for cus
tomers with the best response. This requires identifying differences in customer sensitiv
ity, typically through the conditional average treatment effect (CATE) estimation. In 
theory, to optimize long-term business performance, firms should design targeting poli
cies based on CATE models constructed using long-term outcomes. However, we show 
theoretically and empirically that this method can fail to improve long-term results, par
ticularly when the desired outcome is the cumulative result of recurring customer actions, 
like repeated purchases, due to the accumulation of unexplained individual differences 
over time. To address this challenge, we propose using a surrogate index that leverages 
short-term outcomes for long-term CATE estimation and policy learning. Moreover, for 
the creation of this index, we propose the separate imputation strategy, designed to reduce 
the additional variance caused by the inseparable nature of customer churn and pur
chase intensity, prevalent in marketing contexts. This involves constructing two distinct 
surrogate models, one for the observed last purchase time and the other for the observed 
purchase intensity. Our simulation and real-world application show that (i) using short- 
term signals instead of the actual long-term outcome significantly improves long-run 
targeting performance, and (ii) the separate imputation technique outperforms existing 
imputation approaches.
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mksc.2022.0379. 
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1. Introduction
Recent advancements in business experimentation com
bined with machine learning have transformed how 
companies execute targeted interventions. Through 
controlled experiments, businesses can infer causal rela
tionships between their marketing offerings and custo
mers’ responses. Rather than simply measuring the 
average impact across all customers, companies can fur
ther identify differences in customer sensitivity based 
on individual characteristics, commonly quantified as 
the conditional average treatment effect (CATE). This 
approach empowers firms to focus on customers pre
dicted to respond most favorably to their objectives 
(e.g., profits or purchases), particularly those with the 
highest predicted CATEs. This method has gained sig
nificant popularity among organizations to design effec
tive targeted intervention, and some tech companies, 
such as Microsoft (Oprescu et al. 2019) and Uber (Chen 
et al. 2020), have taken a step further by open sourcing 

their tools for CATE estimation. This has enabled more 
companies to adopt this approach and develop highly 
precise targeted marketing interventions at scale.

This test-to-target approach has proven effective in 
various marketing contexts, such as customer retention 
(Guelman et al. 2012, Ascarza 2018, Lemmens and 
Gupta 2020), membership subscription (Simester et al. 
2020, Yoganarasimhan et al. 2023), and catalog mailing 
purchases (Hitsch et al. 2023). Despite its popularity, it 
remains untested whether this approach can effectively 
optimize long-term outcomes, such as customer life
time value (CLV) or repeated purchases, which are typ
ically the top-line metrics for a firm. In theory, the 
observation window should not alter the way firms 
optimize their resource allocation—If the business goal 
is to maximize long-run outcomes, firms should target 
customers based on their long-term sensitivity to the 
intervention, measured as the CATE of the intervention 
on the long-term business outcome.
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However, our research shows that the conventional 
test-to-target approach can be ineffective at optimizing 
long-term outcomes, especially those driven by recur
ring customer behaviors, such as total purchases over an 
extended postintervention period. Unlike short-term 
outcomes (e.g., immediate purchases after the inter
vention), long-term outcomes accumulate individual 
customer behaviors, such as unobserved heterogeneity 
or unexplained customer attrition, that cannot be ex
plained by the observed customer characteristics col
lected before the intervention. As a result, long-term 
outcomes not only carry information about the treat
ment effect (which is what CATE models aim to cap
ture), but also accumulate unexplained variations that 
grow over time. This presents a significant and under
studied challenge in CATE estimation, as existing mod
els may generate unstable and high-variance CATE 
predictions when unexplained variations are large. Tar
geting customers based on such high-variance models 
can result in an ineffective targeting strategy when opti
mizing for long-term outcomes.

This paper has two main objectives. First, we exam
ine the challenge of estimating CATEs for long-term, 
recurrent customer behaviors. Our theoretical analysis 
shows that such outcomes can accumulate unexplained 
variations due to unobserved heterogeneity or customer 
attrition. Consequently, as we extend the observation 
window, the outcome variance—and by extension, the 
variance of most CATE models—tends to rise. This 
increased variance inadvertently heightens the likeli
hood of incorrect targeting. Second, we present a solu
tion that enables firms to implement more effective 
targeted interventions and achieve better long-term 
performance. We recommend that firms create a noise- 
reduced proxy based on immediate postintervention 
behaviors and use this proxy for CATE estimation 
instead of the actual long-term outcome. Although it 
may seem counterintuitive, this method can potentially 
minimize unexplained variations and effectively cap
ture long-term treatment effects that are reflected in 
short-term behavioral changes.

To construct this noise-reduced proxy, we adopt the 
surrogate index approach (Athey et al. 2019a, Yang et al. 
2023), which uses historical data that is readily avail
able to firms to infer the relationship between short- 
term behaviors and the long-term outcome. In addition 
to providing valid CATE estimation, we formally show 
that the surrogate index has smaller unexplained varia
tions than the actual long-term outcome, leading to 
more accurate CATE estimation. This enables firms to 
effectively target customers based on their long-term 
sensitivity to the intervention while mitigating the 
noise accumulation problem.

We emphasize that the conventional method of sur
rogate index construction, as recommended by Athey 
and Wager (2019) and Yang et al. (2023), may not be 

optimal in scenarios with customer attrition. In the 
presence of attrition, long-term repeated behaviors 
become the product of two critical variables: the dura
tion of a customer’s lifetime and the intensity of these 
behaviors during that lifetime. As both these variables 
are influenced by short-term behaviors and idiosyn
cratic variations in each period, the conventional 
modeling approach fails to identify the correct rela
tionship between short-term and long-term outcomes 
(Brown 1983, Hoderlein and Mammen 2009, Su et al. 
2019).

To address this issue, we propose a novel separate 
imputation technique. Our approach involves develop
ing two separate models using historical data: one to 
predict the time of a customer’s last observed purchase 
(i.e., the proxy for lifetime) and another to predict the 
average purchases per period when a customer is still 
active. We then combine the predictions of both models 
to estimate expected future purchases. This approach 
stands out from other surrogate models by effectively 
mitigating the issue of increased variance that arises 
from the inseparable nature of customer attrition and 
purchase intensity. Consequently, this technique enables 
firms to construct more accurate and robust surrogate 
indices, leading to improved CATE estimation and more 
effective targeting strategies for optimizing long-term 
outcomes.

Through simulation analyses and a real-world mar
keting campaign, we demonstrate that our proposed 
approach is significantly more effective than relying on 
the actual long-term outcome. Specifically, we show 
that targeting rules based on immediate, short-term 
signals—either directly from short-term outcomes or 
through surrogate indices—consistently yield better 
results than those using CATE models estimated using 
the long-term outcome. This is surprising because it 
suggests that, for optimal long-term performances, 
firms should rely on short-term outcomes and histori
cal information rather than on the long-term outcomes 
themselves. Furthermore, we demonstrate that our 
separate imputation approach achieves the best target
ing performance. In the real-world application, target
ing customers using the proposed solution yields a 6% 
increase in profits (compared with directly rolling out 
the best action to all customers), while targeting based 
on the long-term outcome results in a 3% profit loss.

There are several compelling reasons for firms to 
implement our proposed solution. First, it uses exist
ing historical data, obviating the need for new experi
mental data to reduce variance. This benefit translates 
into cost savings, as firms can bypass the expenses 
associated with expanding experimental samples. Sec
ond, the solution integrates seamlessly with standard 
machine learning algorithms and existing software 
packages, facilitating a swift and effective deployment 
geared toward higher profits. Third, it is applicable to 
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a wide variety of business settings, including retailers, 
e-commerce, apparel, and nonprofit organizations. Last, 
our method expedites decision-making processes. Firms 
no longer have to endure the typical delays associated 
with waiting for long-term outcomes, thereby accelerat
ing the implementation of targeted interventions (Athey 
et al. 2019a, Yang et al. 2023).

Our research contributes to the literature in four 
strands. First, we address practical challenges in design
ing and implementing targeting policies. We under
score the limitations of current best practices (Ascarza 
2018, Simester et al. 2020, Ellickson et al. 2022, Yoganar
asimhan et al. 2023), particularly in their ineffectiveness 
for optimizing noisy long-term outcomes. We contrib
ute to this literature by proposing a new targeting para
digm where firms reduce noise in the outcome variable 
before estimating any CATE model. Although ignoring 
the actual outcome of interest may seem counterintui
tive, we demonstrate how creating the “right” proxy 
using the surrogate index approach with proper impu
tation methods results in more effective targeting.

Second, our work highlights a significant challenge 
in estimating the CATE and effective targeting in sce
narios characterized by a low signal-to-noise ratio. Con
siderable research has been dedicated to developing 
methods for CATE estimation (Imai and Strauss 2011, 
Imai and Ratkovic 2013, Guelman et al. 2015, Grimmer 
et al. 2017, Chernozhukov et al. 2018, Athey et al. 2019b, 
Künzel et al. 2019, Nie and Wager 2021, Kennedy 2023) 
and policy learning (Manski 2004, Kitagawa and Tete
nov 2018, Athey and Wager 2021, Mbakop and Tabord- 
Meehan 2021). To the best of our knowledge, this paper 
is the first to theoretically explore how unexplained var
iations affect the predictive accuracy of CATE models 
and their targeting performance. Moreover, we incor
porate behavioral insights from marketing literature to 
illustrate why the issue of high noise is common in 
many marketing contexts. Our study provides impor
tant insights into the limitations of existing CATE mod
els and highlights the need for robust solutions to 
estimate CATEs.

Third, we contribute to the literature on statistical sur
rogacy and long-term treatment effect estimation (Pren
tice 1989, Athey et al. 2019a, Qian et al. 2021, Imbens et al. 
2022, Yang et al. 2023). This literature has traditionally 
assumed that firms use short-term signals because of the 
cost of waiting to observe long-term outcomes. We fur
ther demonstrate, using formal theory and empirical evi
dence, the value of leveraging short-term proxies even 
when the actual long-term outcome is observed. More
over, past research has primarily constructed surrogate 
indices using standard regression models, whereas our 
work highlights the importance of considering the data 
generating process for surrogate indices construction.

Last, our work contributes to the literature on treat
ment effect estimation for low-sensitivity experiments 

(i.e., experiments with outcome variance much larger 
than the treatment effect). Our approach differs from 
previous research (Deng et al. 2013, Guo et al. 2021, Jin 
and Ba 2023) in a critical way—We do not reduce vari
ance by eliminating variations that can be explained by 
customer observables. Instead, we advocate for the use 
of information explainable by short-term signals and 
pretreatment covariates for CATE estimation and tar
geting. This strategy is pivotal, as it targets the core 
issue of high variance in CATE estimates arising from 
unexplained variations, rather than from the observ
able heterogeneity among customers.

2. Data and Motivation
We use a field experiment from a retail technology com
pany in Taiwan to highlight the challenges of targeting 
with the goal of maximizing repeated purchases over 
an extended period of time. This company manages a 
network of self-service vending machines at various 
locations within a city. Customers can grab food and 
beverages from a vending machine, and the machine 
automatically counts the items using Radio Frequency 
Identification technology and charges the customers 
through their preregistered payment methods. The 
company uses a third-party messaging platform (like 
WhatsApp) to manage customer profiles and send mar
keting messages. To use this service, customers must 
join the company’s messaging app channel and register 
their payment methods through the messaging app.

2.1. Marketing Intervention
As part of the customer activation process, the company 
sends a 15% discount coupon to every new customer fol
lowing their first purchase. The coupon is automatically 
applied to the next purchase made within 14 days, after 
which it expires. The company considered offering addi
tional coupons to some newly acquired customers, but 
only if doing so would increase their total purchases in 
the subsequent months. To develop a targeted approach, 
they conducted a randomized controlled experiment to 
identify customers who would increase their purchases 
as a result of such an intervention.

In the experiment, the company randomly assigned 
customers who had just made their first purchase to one 
of two groups: a control group (Wi� 0) that received 
one coupon (i.e., the “business-as-usual” case) or a treat
ment group (Wi� 1) that received three coupons. All 
coupons offered a 15% discount and expired after 
14 days. The experiment included 1,853 customers, with 
889 assigned to the treatment group and 964 to the con
trol group. The company collected several pretreatment 
covariates on customers to design personalized inter
ventions, such as acquisition channels and informa
tion about their first purchase. (Further details on these 
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covariates and randomization checks can be found in 
Table 2 in Section 6.)

2.2. Average Treatment Effect on Repeated 
Purchasing Behaviors

Before delving into customer-specific impacts, we first 
assess the average treatment effect of the intervention 
on overall customer purchases. In the week immedi
ately after the intervention, the total number of pur
chases, represented as Yi, 1, increase by 10% over the 
control group, but this effect is not statistically signifi
cant (p�0.62). When we extend the observation horizon 
to 10weeks,1 the average treatment effect on 10-week 
purchases (denoted as Yi, 10) is 0.3153 (with p�0.03), cor
responding to a 30% increase (where the control group 
had an average of Yi, 10 of 0.99). Clearly, the company’s 
intervention had a long-lasting impact on repeated cus
tomer purchases, whereas the short-term impact was 
relatively small.

To gain deeper insights into the intervention’s effects 
on repeated purchasing behaviors, we further investi
gate the differences in customer attrition and purchase 
frequency between the two treatment groups condi
tional on being “alive” (Figure 1). The leftmost figure 
illustrates the percentage of “alive” customers, defined 
as those making a purchase in a given week or after
ward (up to 50 weeks after their initial purchase). The 
data suggests that the intervention reduced customer 
churn, with the treatment group consistently exhibiting 
higher percentages of “alive” customers than the con
trol group. The rightmost figure in Figure 1 shows the 
weekly average number of purchases per active cus
tomer. For the first seven weeks, retained customers in 
the treatment group made more purchases on average 
than those in the control group.

2.3. Designing Targeted Interventions Through 
CATE Estimation

The primary objective of the focal firm was to identify 
customer segments with the most favorable responses 

to the intervention with the goal of exclusively target
ing these segments in future activation campaigns. 
With this in mind, the company aims to create a treat
ment prioritization rule, optimizing outcomes through 
targeted treatment assignments (Athey 2017, Ascarza 
2018, Hitsch et al. 2023). We now demonstrate how the 
firm can use the experiment to achieve this aim.

Let’s begin by examining a scenario where the focal 
firm’s goal is to maximize customer purchases within 
the first week postintervention (i.e., Yi, 1). This approach 
aligns with prevalent coupon targeting literature (Dubé 
et al. 2017, Gubela et al. 2017), where the primary aim is 
enhancing immediate purchases after the intervention. 
To identify which customers should be offered addi
tional coupons, we construct a CATE model for Yi, 1. 
Specifically, this model is designed to estimate the 
quantity τY1(Xi) ≡ E[Yi, 1(1) |Xi]�E[Yi, 1(0) |Xi], where 
Yi, 1(Wi) is the potential outcome (Rubin 1974) of cus
tomer i’s first-week purchase given the treatment con
dition Wi, and Xi includes the pretreatment customer 
covariates mentioned previously.

To evaluate the model’s performance, we apply a 
bootstrap validation method similar to that used in 
Ascarza (2018) (see Section 6.3 for details). Briefly, we 
first estimate a CATE model using the training set and 
predict CATEs for the validation customers. We then 
sort validation customers based on their predicted 
CATEs and group them into quintiles, with Q1 contain
ing customers with the highest predicted CATEs (i.e., 
those who are predicted to increase purchases the most 
because of the intervention), and Q5 containing those 
with the lowest predicted CATEs. Finally, we evaluate 
the model’s ability to identify the “right targets” by 
computing the group average treatment effect (GATE) for 
each quintile. We compute two measures: (i) the pre
dicted CATEs (Prediction) and (ii) the actual outcome 
Yi, 1 (Data).

Figure 2 presents the predicted vs. actual GATEs for 
customers in the validation data set.2 The closeness 
between predicted and actual GATEs indicates the 

Figure 1. (Color online) Percentage of Alive Customers and Average Weekly Purchases After the Intervention 

Note. Customers are labeled as “alive” if they made at least one purchase in that week or later (up to week 50).
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CATE model’s accuracy in estimating the true treat
ment effect. Specifically, the target segment recom
mended by the model (Q1) includes customers for 
whom the intervention was the most beneficial (with 
an the actual GATE of 0.037, four times the ATE), 
whereas the do-not-touch segment (Q5) includes custo
mers for whom the intervention did not generate addi
tional purchases (with an actual GATE of �0.0196). 
This suggests that the model can effectively rank custo
mers according to their responsiveness to the interven
tion, enabling the firm to design targeted policies that 
maximize customer transactions within one week fol
lowing the intervention.

However, the firm’s primary goal is to stimulate pur
chases across a longer time frame, particularly in the 
10 weeks following the intervention, rather than merely 
increasing immediate purchases. In theory, the same 
targeting approach should be applicable, with the 
only difference being the use of Yi, 10 as the outcome for 
estimating CATEs, that is, τY10(Xi) ≡ E[Yi, 10(1) |Xi]�

E[Yi, 10(0) |Xi], and comparing predicted and actual 
GATEs. Therefore, we replicate the same analysis, this 
time using the total purchases made within the 10weeks 
following the intervention as the dependent variable.

Figure 3 presents the predicted vs. actual GATEs on 
Yi, 10 for the validation customers. The U-shaped trajec
tory of the actual GATEs underscores the inability of 
the CATE model to accurately rank customers by their 
treatment effects on Yi, 10. For instance, if the company 
chooses to target customers within Q1 (those antici
pated to show the strongest effect), the actual uplift 
from targeting this segment would be an increase of 
0.41 purchases, contrasting the 0.58 predicted by the 
model. This divergence is even more apparent for cus
tomers predicted to benefit the least from the treatment 
(those in Q5). Although the model predicts zero impact 

for this group, in reality, targeting them would result in 
an uplift of 0.63 purchases, notably outperforming the 
outcome of targeting Q1. Consequently, targeting strat
egies based on this CATE model would be ineffective.

Why does the test-to-target approach succeed for 
optimizing short-term outcome (Yi, 1) but struggle with 
long-term outcome (Yi, 10)? Is this a general phenome
non that extends beyond this particular example? If 
so, how can marketers design targeted interventions 
to optimize long-term outcomes? We address these 
questions in the remaining of this article. Section 3
examines common consumer behaviors that drive the 
accumulation of unexplained variations and analyzes 
their consequences for CATE estimation and targeting 
when optimizing long-term outcomes. Section 4 intro
duces a general solution that uses the less noisy short- 
term behaviors to predict the long-term treatment 
effect while reducing unexplained variations, along 
with the proposed strategy to address customer attri
tion. In Section 5, we validate our solution through 
simulation analyses and explore the trade-off between 
information gain and noise accumulation. We demon
strate the superiority of our approach in a real-world 
marketing campaign in Section 6. Finally, we conclude 
in Section 7 and suggest several research directions for 
future work.

3. Problem: Unexplained Variations in
Long-Term Repeated Purchases

The difficulty of targeting for long-term outcomes 
arises from two interrelated issues. First, long-term 
outcomes—particularly those involving repeated con
sumer interactions—tend to have high levels of un
explained variation due to the accumulation of 
unexplained customer behavior. Second, this noise 
accumulation problem can significantly undermine the 
precision of popular CATE models, resulting in sub
optimal targeting approaches. Our theoretical analysis 

Figure 2. (Color online) Predicted and Actual GATEs by Pre
dicted CATE Levels When the Outcome Variable Is Yi, 1 

Notes. Groups Q1, : : : ,Q5 are categorized based on the decreasing 
order of treatment effects predicted by the CATE model for Yi, 1. 
Hence, the predicted GATEs (triangles line) are monotonically de
creasing by definition. Actual GATEs (circles line) are computed from 
Yi, 1. For example, the predicted and actual GATE on Yi, 1 for Q1 are 
0.046 and 0.038, respectively.

Figure 3. (Color online) Predicted and Actual GATEs by Pre
dicted CATE Levels When the Outcome Variable Is Yi, 10 

Notes. Groups Q1, : : : ,Q5 are categorized based on the decreasing 
order of treatment effects predicted by the CATE model for Yi, 10. 
Actual GATEs (circles line) are computed from Yi, 10.
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formalizes and generalizes this problem by examining 
two critical aspects: (i) identifying when and why the 
unexplained variance for long-term outcomes increases 
as the observation window expands and (ii) understand
ing the impact of noise accumulation on the accuracy 
of state-of-the-art CATE models and the consequent tar
geting performance. (Detailed proofs of all theoretical 
results are available in the Online Appendix A.)

3.1. Characterizing Long-Term Repeated Pur
chasing Outcomes

We examine a particular type of outcome variable: the 
cumulative sum of recurring behaviors over time. Such 
outcomes are commonly observed in marketing, rang
ing from repeated transactions in retail companies, to 
total engagement time for social media platforms, and 
customer lifetime value for Software-as-a-service 
businesses. For illustration throughout this paper, 
let’s take the example of a retail company aiming to 
maximize total purchases over T periods. The firm 
plans to achieve this by targeting a marketing inter
vention, like distributing additional coupons to speci
fic types of customers. Let Wi ∈ {0, 1} denote the 
treatment assigned to customer i, and let Xi represent 
the pretreatment covariates used for determining this 
assignment. The total purchases made by customer i 
over T periods is represented by Yi, T. This is equiva
lent to the aggregate of transactions across all periods, 
expressed as Yi, T(Wi) ≡

PT
t�1 Si, t(Wi): Here, Si, t(Wi)

denotes the purchases by customer i in period t given 
the treatment Wi.

Our first objective is to investigate how the unex
plained variations in Yi, T(Wi)—specifically the varia
tion in Yi, T(Wi) that cannot be attributed to Xi and Wi— 
evolves as T increases. To achieve this, we break down 
the long-term outcome in the following manner:

Yi, T(Wi) �
XT

t�1
E[Si, t(Wi) |Xi]

|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
�E[Yi,T(Wi) |Xi]

+
XT

t�1
εS

i, t

|fflfflffl{zfflfflffl}

≡ε
YT
i

, 

where E[Si, t(Wi) |Xi] is the expected purchases in 
period t for customer i given treatment Wi and covari
ates Xi, and εS

i, t represents the mean-zero unexplained 
variations of purchases in period t. Then, the variance 
of unexplained variations in the outcome of interest is 
given by 

Var[εYT
i ] � Var

XT

t�1
εS

i, t

" #

�
XT

t�1
Var[εS

i, t]

+ 2
X

1≤ t1 < t2 ≤T
Cov[εS

i, t1
,εS

i, t2
]:

This decomposition reveals that when there is nonneg
ative serial correlation in the per-period unexplained 

variations (specifically, when Cov[εS
i, t1

,εS
i, t2
] ≥ 0 for any 

t1 < t2 ≤ T), the variance of these unexplained varia
tions in Yi, T increases with the length of the observation 
period T. We next argue that common factors in mar
keting contexts, such as unobserved heterogeneity and 
customer attrition, often lead to positive serial correla
tion in these unexplained variations (Guadagni and 
Little 1983, Fader and Lattin 1993, Roy et al. 1996). Con
sequently, the existence of these factors in customer 
behavior typically results in a progressive accumula
tion of noise over time.

3.1.1. Unobserved Heterogeneity. When there are var
iations in customers’ intrinsic preference toward the 
company—commonly known as unobserved heterogene
ity or individual fixed effects—positive serial correlation 
in unexplained variations arises (Jones and Landwehr 
1988, Gonul and Srinivasan 1993). To illustrate that, 
assume that the unexplained variation in each period 
can be expressed as

εS
i, t � ε

S
i + η

S
i, t, 

where εS
i represents the time-invariant individual pur

chase tendency (that is not captured by Xi), and ηS
i, t 

denote the independent per-period shock that is inde
pendent of εS

i . Then, the serial correlation of εS
i, t is posi

tive because

Cov[εS
i, t1

,εS
i, t2
] � Var[εS

i ] +Cov[εS
i ,ηS

i, t1
] +Cov[εS

i ,ηS
i, t2
]

+Cov[ηS
i, t1

,ηS
i, t2
] � Var[εS

i ] > 0:

This result emphasizes that, when observable characteris
tics (Xi) are insufficient to capture customer heterogeneity 
in the long-term outcome, the unexplained variations will 
exhibit positive serial correlations over time.

3.1.2. Customer Attrition. Also known as customer 
churn, customer attrition represents the progressive loss 
of customers over time. This phenomenon exits in many 
business contexts and has been extensively analyzed in 
the context of recurring purchase behaviors and cus
tomer relationship management (Schmittlein et al. 1987, 
Fader et al. 2005, Neslin et al. 2006, Ascarza et al. 2018b, 
Bachmann et al. 2021). In the following discussion, we 
demonstrate how customer attrition, whether observed 
or latent, results in a positive serial correlation in unex
plained variations.

To get the intuition why customer attrition implies 
positive serial correlation, let’s first consider the sce
nario where a customer churns in period t. In such a 
case, all future unexplained variations for this customer 
would be negative, given that their actual purchases 
reduce to zero. Conversely, if a customer remains active 
at time t, the unexplained variations from all earlier 
periods for this person would likely skew positive. This 
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occurs because the expected per-period purchases across 
all customers (comprising both churned and active indi
viduals) tend to be lower than the realized purchases of 
a customer who remains active. Therefore, we can infer 
that the unexplained variation in per-period purchases 
exhibits positive serial correlations.

To formally demonstrate that customer attrition 
causes positive serial correlation of unexplained varia
tions, we need to unpack the dynamics of how cus
tomer attrition affects εS

i, t. When a customer is still 
“alive” in period t, the actual purchase for that period 
might diverge from the expected purchase, and we 
denote this deviation as ηS

i, t. For simplicity, let’s assume 
these deviations are independent across distinct periods 
(i.e., there is no unobserved heterogeneity). Conversely, 
for a customer who has churned in period t (or before), 
the unexplained variation is the negative expectation of 
their purchase in that period, that is, �E[Si, t(Wi) |Xi]. 
Consequently, the unexplained variation for period t 
can be expressed as

εS
i, t � 1[i remains active at t]ηS

i, t

�1[i has churned at t] ·E[Si, t(Wi) |Xi]:

Given this formulation, the expected value of ηS
i, t is pos

itive, ensuring that E[εS
i, t] � 0. This is consistent with 

the earlier intuition: Because the expected short-term 
purchase, denoted as E[Si, t(Wi) |Xi], is an average taken 
across both alive and churned customers, it follows 
that the expected purchase from an “alive customer” 
should surpass this average.

Proceeding to the correlation dynamics, we show in 
Online Appendix A.1 that the covariance between the 
unexplained variations for periods t1 < t2 is

Cov[εS
i, t1

,εS
i, t2
]

� [1�θt1(Wi |Xi)]{E[Si, t1(Wi) |Xi] +E[ηS
i, t1
]}

× θt2(Wi |Xi){E[Si, t2(Wi) |Xi] +E[ηS
i, t2
]} ≥ 0, (1)

where θt(Wi |Xi) denotes the probability that the cus
tomer is still alive at t. Essentially, this covariance 
represents the comovement attributed to customer 
attrition at time t1, as it is the product of (i) the likeli
hood of customer churn at t1 multiplied by the 
expected impact if the customer churns at this time 
(i.e., [1�θt1(Wi |Xi)]{E[Si, t1(Wi) |Xi] +E[ηS

i, t1
]}), and (ii) 

the probability of the customer remaining active at t2 
combined with the expected purchase when alive at t2 
(i.e., θt2(Wi |Xi){E[Si, t2(Wi) |Xi] +E[ηS

i, t2
]}). Given that 

every term in (1) is nonnegative, the resulting covari
ance is also nonnegative.

3.1.3. Other Customer Behaviors. Certainly, other be
havioral factors can also contribute to positive (or neg
ative) serial correlation. For instance, the presence of 

state dependence, habit persistence, and psychological 
switching costs can lead consumers’ past consumption 
to positively influence their future consumption (Roy 
et al. 1996, Keane 1997, Seetharaman 2004, Dubé et al. 
2010). Under such circumstances, a notable increase in 
previous purchases can boost subsequent purchases, 
resulting in positively correlated unexplained variations. 
Conversely, in settings where consumers exhibit stock
piling behavior (Tulin et al. 2002), there might exist a neg
ative correlation between unexplained variations across 
different periods. It will depend on whether the strength 
of the stockpiling behavior is stronger than that of the 
unexplained variations driven by unobserved heteroge
neity and attrition.

To summarize, the degree of noise accumulation is 
determined by two main factors: (i) the presence and 
significance of behavioral drivers in the data set and 
(ii) the effectiveness of using observable characteristics
to predict these drivers. For instance, if the observable
characteristics fail to comprehensively capture custo
mers’ inherent preferences toward the company, this
can lead to a significant accumulation of unexplained
variations in long-term outcomes. Similarly, in situa
tions where customer attrition is prevalent, the unex
pected churn can lead to significant shocks in total
purchases, resulting in increased unexplained varia
tions in the long-term outcomes.

In our empirical application, we expect to have unob
served heterogeneity since the information from the ini
tial purchase is unlikely to account for all the variation 
in individual preferences. Besides, Figure 1 demon
strates significant customer attrition, contributing to the 
accumulation of unexplained variation due to unpre
dictable churn. Moreover, stockpiling is unlikely in this 
context given the perishable nature of the goods sold in 
their vending machines. Taking all these factors into 
consideration, the focal firm is indeed facing the prob
lem of increasing noise in their outcome of interest (i.e., 
long-term total purchases) as they increase the observa
tion window. We present evidence supporting noise 
accumulation and positive serial correlation of unex
plained variations in Section 6.2.

3.2. Implications for CATE Estimation 
and Targeting

The second objective of our theoretical analyses is to 
examine how noise accumulation in the outcome vari
able impacts the predictive accuracy of CATE models 
and their effectiveness in targeting. Within this context, 
we establish two key results: first, the variance in pre
dicted CATEs escalates with increasing unexplained 
variations; and second, as this variance grows, the like
lihood of making incorrect targeting decisions also 
increases.

In our analysis, we assume the firm has conducted 
a randomized controlled experiment such that the 
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complete randomization, overlap, and no interference 
assumptions hold (Imbens and Rubin 2015). Addition
ally, we focus on a broad spectrum of CATE models, as 
detailed in Assumption App-2 in Online Appendix A.2. 
A defining feature of these CATE models is that the pre
diction for a new individual can be represented as a 
weighted average of residualized outcomes from the 
training data, where the weights are determined by the 
degree of similarity in covariates between individuals in 
the training set and the new individual and estimated 
using honest estimation (Athey et al. 2019b). Besides, the 
residualization function is constructed using cross-fitting 
(Newey and Robins 2018). Essentially, this class includes 
popular models such as Causal Forest (Wager and Athey 
2018), S-learners and T-learners with different outcome 
models (Künzel et al. 2019), and R-learners with a variety 
of second-stage estimators (Nie and Wager 2021, Ken
nedy 2023). Online Appendix A.2 provides a formal 
characterization of these models.

The following theorem formally establishes the rela
tionship between the magnitude of unexplained varia
tions and the variance of state-of-the-art CATE models.

Theorem 1 (Variance of CATE Prediction). Assume that 
the CATE model (denoted as bτYT ) belongs to the general class 
described previously. Then, the variance of the predicted 
CATE for an individual with covariates xnew scales with the 
amount of unexplained variations in the outcome variable. 
Mathematically, for given the same level of observed heteroge
neity in the training set (i.e., {Xi, Wi}

N
i�1), there exists two 

constants C1 and C2 such that

C1Var[εYT
i ] ≤ Var[bτYT (xnew) |{Xi, Wi}

N
i�1] ≤ C2Var[εYT

i ],
(2) 

when Var[εYT
i ] ≥ σ

2
0 for some σ2

0.

Theorem 1 shows that the upper and lower bounds 
of the variance of the predicted CATE are proportional 
to the variance of the unexplained variation in the out
come variable when it is nontrivial, with both bounds 
increasing monotonically in Var[εYT

i ]. Consequently, 
the unexplained variation in the outcome variable, 
irrespective of its impact on the consistency of CATE 
estimators, leads to instability in CATE models. This 
insight is especially crucial for practitioners focusing 
on optimizing long-term outcomes, as accumulating 
unexplained variations can significantly heighten the 
variance of the CATE estimator.

Next, we assess how often targeting decisions in
formed by the CATE model diverge from the optimal 
targeting strategy, which involves targeting customers 
with positive true CATEs. The result in Theorem 1
leads to the following.

Corollary 1 (Mistargeting Probability). Suppose the com
pany has an unbiased CATE model bτYT and targets only 
customers predicted to have a positive treatment effect.3

Then, the probability of the model deviating from the optimal 
policy, P[τYT (xnew) · bτYT (xnew) < 0], increases with the var
iance of the predicted CATE, that is, Var[bτYT (xnew)].

Corollary 1 reveals a fundamental challenge in target
ing for long-term outcomes: Instability in CATE predic
tions caused by unexplained variations in the outcome 
variable can result in erroneous targeting decisions. 
Therefore, regardless of the application domain, com
panies will invariably encounter challenges in accurate 
targeting when faced with substantial unexplained var
iations in the outcome variable.

A possible solution to the high variance problem in 
optimizing long-term outcomes is the use of CATE esti
mators specifically tailored to reduce prediction variance. 
This can be achieved by constraining the complexity of 
the CATE model, such as applying lasso regularization 
during the estimation process of R-learners (Nie and 
Wager 2021). Although these estimators are effective at 
reducing variance, they often introduce substantial 
underfitting bias. Our empirical analyses indicate that in 
cases with limited sample sizes, this bias can significantly 
impair targeting accuracy (refer to Table 1 for empirical 
results). Therefore, the effective use of regularization 
necessitates large sample sizes.

Finally, there are alternative approaches for develop
ing targeting policies. These methods, known as policy 
learning, directly leverage experimental data to learn the 
optimal allocation of treatments. They typically derive a 
proxy variable for the true CATE, such as the inverse 
probability weighting (Kitagawa and Tetenov 2018) or 
doubly robust scores (Athey and Wager 2021) and then 
estimate a policy (often using machine learning models) 
to determine which customers the firm should target. 
Because these methods depend on a proxy variable 
derived from experimental data, they are conceptually 
similar to the targeting approach examined in this sec
tion. Therefore, they encounter a similar challenge: sub
stantial unexplained variations in the outcome variable 
can increase the variance of the CATE proxy, resulting 
in ineffective targeting policies. We provide additional 
empirical evidence in Section 6.4.2.

3.3. Summary
Our theoretical analysis reveals that for outcomes 
based on repeated customer behaviors, factors like 
unobserved heterogeneity and customer churn are 
key contributors to unexplained per-period variations. 
Over time, these variations accumulate, resulting in 
increased variance in outcomes as the observation 
period lengthens. As a result, the accuracy of conven
tional CATE models is compromised due to this noise 
accumulation, leading to less effective targeting deci
sions. These insights highlight a critical challenge in 
estimating CATEs and developing effective targeting 
strategies for long-term business outcomes.
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4. Solution: Surrogate Index with
Separate Imputation

Thus far, we identified that the primary issue with inef
fective long-term targeting arises from the accumulation 
of unexplained variations in the outcome of interest. 
Therefore, a potential solution to improve targeting 
effectiveness is to reduce the unexplained variations in 
long-term outcomes that are not attributable to the inter
vention. To achieve this, we suggest using a noise-reduced 
proxy in place of the actual outcome variable when esti
mating the CATE model. This proxy aims to capture the 
long-term treatment effect heterogeneity while exclud
ing the variations unrelated to the intervention.

4.1. Solution Overview
We use the surrogate index (Athey and Wager 2019, 
Yang et al. 2023) to construct the noise-reduced proxy. 
This index represents the expected long-term outcome, 
derived from a set of observed short-term outcomes—such 
as immediate postintervention purchases in our case— 
and pretreatment covariates. To construct a surrogate 
index, companies can use historical data to build a 
model that identifies the relationship between short- 
term behaviors (along with customer covariates) and 
the actual long-term outcome. After establishing such a 
model, companies can collect short-term data, use it to 
predict long-term outcomes, and then assess the impact 
of their intervention based on these predicted long-term 
results. This approach offers three major advantages: 

1. Noise Reduction: By design, the surrogate index 
incorporates only unexplained variations from the short- 
term outcomes in the surrogate model. Therefore, the 
predicted long-term outcome (or proxy) excludes the 
unexplained variations of behaviors occurring after these 
short-term outcomes were collected. As a result, the sur
rogate index includes fewer unexplained variations (i.e., 
those unrelated to the intervention) compared with the 
actual long-term outcome.

2. Long-Term Orientation: The surrogate index effec
tively represents the long-term effect of the interven
tion. Many marketing interventions result in long-term 
shifts in consumer behaviors by initiating immediate 
behavioral modifications. In such scenarios, short-term 
outcomes frequently account for a significant portion, 
if not all, of the long-term treatment effect. For exam
ple, the coupon promotion in our empirical application 
can reduce customer churn in the initial week follow
ing the intervention, as illustrated in Figure 1, and this 
enhanced retention eventually results in increased 
aggregate long-term purchases due to the extended 
lifetime of customers who received more promotions. 
The short-term purchase data in this scenario reflects 
the enhanced retention, enabling the surrogate index to 
use this information to forecast the sustained, long- 
term retention improvements.

3. Acceleration of Decision Time: For constructing a sur
rogate index, companies require: (i) a model that links 
short-term signals with long-term outcomes, which is 
estimated using historical data; (ii) preintervention 
covariates that are available before implementing the 
intervention; and (iii) short-term outcomes that are 
observed immediately following the intervention. As a 
result, companies can develop targeting strategies for 
optimizing long-term outcomes soon after the interven
tion (i.e., as soon as the short-term signals are observed), 
thus bypassing the delay associated with waiting for 
observing the actual long-term outcomes.

The first benefit of the surrogate index method high
lights its potential to improve long-term targeting effective
ness. By reducing unexplained variations in the outcome 
variable, it enhances CATE estimation precision (as per 
Theorem 1), leading to more accurate targeting decisions 
(Corollary 1). The second benefit confirms the validity of 
using the surrogate index for estimating long-term treat
ment effects: although such targeting policies mainly 
depend on short-term behaviors, they can be effective if 
these behaviors explain a significant proportion of the 
long-term treatment effect. The third benefit, although not 
essential in our case since the focal company can postpone 
the implementation of new targeting rules, might be cru
cial in situations where rapid decision-making can lead to 
substantial savings in organizational costs.

We next provide the formal definition of a surrogate 
index, specify the conditions required for it to capture 
long-term treatment effects (benefit 2), and illustrate its 
variance reduction property (benefit 1).

4.2. Identification and Variance Reduction Using 
Surrogate Index

Assume that the company has access to two data sets: 
the experimental data with the intervention (denoted as 
E), and the historical data without the intervention 
(denoted as H). The surrogate index is defined as follows.

Definition 1 (Surrogate Index). The surrogate index is 
the expected long-term outcome (Yi, T) of customers 
in H, conditioned on their short-term behaviors (Si, T0 

� {Si, 1, : : : , Si, T0} for some T0 < T) and pretreatment
covariates (Xi). Mathematically, it can be represented
as eYT(ST0 ,Xi) ≡ EH[Yi, T |ST0 ,Xi]:

To ensure identification of CATEs using the short-term 
signals, the following assumptions are made (Athey et al. 
2019a).

Assumption 1 (Identification Assumptions for Long-Term 
CATEs). For the identification of the long-term treat
ment effect through a surrogate index, the following 
assumptions are made: 

1. (Surrogacy) The short-term outcomes can fully mediate
the treatment effect of Wi on Yi, T; that is, Wi⊥⊥Yi, T |Si, T0 , 
Xi, ∀i ∈ E:
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2. (Comparability) The experimental and historical data
are comparable in distribution; that is, Yi, T |Si, T0 ,Xi, i ∈ E

~d Yi, T |Si, T0 ,Xi, i ∈H:

The surrogacy assumption states that the variations in 
short-term behaviors induced by the intervention can 
fully reflect its causal impact on the long-term outcome. 
Therefore, if this assumption holds, and we can accu
rately estimate the influence of Si, T0 on Yi, T, then the 
long-term treatment effect can be deduced simply by 
observing the short-term outcomes of the experimental 
units. The comparability assumption ensures that the 
impact of Si, T0 on Yi, T is the same for both the experi
mental data and the historical data, which implies that 
one can use the historical data to infer the impact of Si, T0 

on Yi, T and then extrapolate this relationship to the 
experimental data.

Altogether, when both of these assumptions hold 
true, the surrogate index representation becomes a 
reliable tool for estimating the CATE on the long-term 
outcome. Furthermore, because the surrogate index is 
based on short-term outcomes, it contains less unex
plained variation compared with the actual long-term 
outcome. Formally, we state the theorem as follows.

Theorem 2 (Identification and Variance Reduction Using 
Surrogate Index). Suppose that Assumption 1 holds. 

1. The CATE of the intervention on the long-term outcome 
is equal to the CATE on the surrogate index, that is, τYT (Xi) �
eYT(Si, T0(1), Xi)� eYT(Si, T0(0), Xi), where Si, T0(Wi) denotes 
the potential outcome of the short-term outcomes.

2. The variance of the surrogate index is smaller than the
variance of the actual long-term outcome, that is, Var[eYT 
(Si, T0(Wi), Xi)] < Var[Yi, T(Wi) |Xi]:

Theorem 2(1) suggests that the surrogate index offers 
an unbiased estimation of the CATE for the long-term 
outcome, assuming we can correctly estimate EH[Yi, T |

ST0 , Xi]. Meanwhile, Theorem 2(2) demonstrates that 
the surrogate index has lower variance compared with 
the actual long-term outcome. Combining these insights 
with those from Theorem 1 and Corollary 1, it becomes 
evident that employing the surrogate index method 
for CATE estimation can (i) reduce variance in CATE 
predictions and (ii) decrease the likelihood of mistar
geting when the objective is optimizing the long-term 
outcome.

Importantly, the realization of these benefits depends 
primarily on the validity of Assumption 1, as discussed 
in Section 4.4. It also relies on the firm’s capability to 
accurately estimate EH[Yi, T |ST0 , Xi] using available his
torical data, which we will discuss in the following 
section.

4.3. Separate Imputation Approach
Conventionally, researchers have constructed the surro
gate index by using a regression model that associates 

long-term outcomes with short-term results and prein
tervention covariates (Athey and Wager 2019, Yang 
et al. 2023). However, in many marketing scenarios, this 
method may encounter a challenge of high variance, 
particularly in the presence of customer attrition, as unex
plained customer churn hinders the model’s ability to 
distinguish between variations that can and cannot be 
explained by the short-term outcomes. In this section, 
we delve into the reasons for this shortcoming and intro
duce an novel solution that firms can seamlessly adopt 
when constructing the surrogate index.

4.3.1. Challenge: Inseparable Unexplained Variations 
Arising from Attrition. When customer attrition exists, 
the total purchases of customer i over T periods (Yi, T) 
are determined by two factors: the customer’s active 
lifetime up to period T (denoted as T T

i ), and their 
expected purchase per period while active (denoted as 
ΛT

i ). We can further break down these factors into var
iations that can be explained by Si, T0 and Xi, and unob
served variations arising from individual preferences 
toward the firm not captured in the data (e.g., unob
served heterogeneity, random shocks, etc.). Hence, 
the aggregate purchase counts for customer i can be 
expressed as

Yi, T � T T
i × Λ

T
i � {E[T

T
i |Si, T0 ,Xi] + ε

T
i }

× {E[ΛT
i |Si, T0 , Xi] + ε

Λ
i }

� E[T T
i |Si, T0 ,Xi]E[ΛT

i |Si, T0 ,Xi]

+E[ΛT
i |Si, T0 ,Xi]ε

T
i +E[Λ

T
i |Si, T0 ,Xi]ε

Λ
i|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

≡ξi(Si,T0 ,Xi), additional variations

+ εTi ε
Λ
i ,

(3) 

where εTi and εΛi denote the unexplained variations in 
lifetime and purchase intensity, respectively.

The previous formulation reveals a key challenge in 
estimating the relationship between short-term and long- 
term outcomes: There is an additional term, ξi(Si, T0 , Xi), 
which connects explained variations in customer life
time (attributable to short-term outcomes and observed 
covariates) with unexplained variations in per-period 
purchase intensity, and vice versa. This implies that 
directly modeling Yi, T using Si, T0 (and Xi) becomes 
problematic, as the model may not effectively differenti
ate whether variations in Yi, T are driven by Si, T0 (and Xi) 
or by εTi and εΛi . This inseparability results in high vari
ance in the surrogate model, as it struggles to separate 
the explainable and unexplainable variations present in 
the historical data. (Further discussion and an empirical 
example of this phenomenon are available in the Online 
Appendix B.)

Previous research has addressed the inseparability 
problem by introducing additional assumptions (Brown 
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1983, Roehrig 1988, Chesher 2003, Hoderlein and Mam
men 2007, Imbens and Newey 2009). For example, 
a common method to tackle the multiplicative noise 
structure is to assume that the unexplained part in the 
outcome variable (e.g., ξi(Si, T0 ,Xi) and εTi εΛi in (3)) is 
independent of the target variables (Si, T0 in our case) 
after controlling for observed covariates (Hoderlein and 
Mammen 2007, 2009; Su et al. 2019). However, this 
assumption does not hold in our scenario because 
ξi(Si, T0 ,Xi) is clearly associated with Si, T0 even after con
trolling for Xi. Another solution proposed in the litera
ture is to use instrumental variables that correlate with 
Si, T0 but remain unassociated with the unexplained var
iations (Chernozhukov et al. 2007). Yet, this approach is 
rarely feasible in practice since it necessitates historical 
data that includes exogenous shocks capable of serving 
as instrumental variables when modeling the relation
ship between short-term and long-term outcomes.

Consequently, we propose a new imputation technique 
for creating the surrogate index, specifically designed to 
tackle the inseparability problem stemming from customer 
attrition.

4.3.2. Solution: Separate Models for Customer Attri
tion and Purchase Intensity. Upon examining (3), it 
becomes clear that the issue of inseparable unexplained 
variations can be addressed by separately estimating 
two relationships: first, between customer lifetime and 
short-term outcomes (i.e., E[T T

i |Si, T0 ,Xi]), and another 
between purchase intensity and short-term outcomes 
(i.e., E[ΛT

i |Si, T0 ,Xi]), and combine the predictions of 
these two models afterward. We refer to this as the sepa
rate imputation approach as we determine the long-term 
outcome by combining predictions from two distinct 
surrogate models rather than making a direct prediction.

To be more specific, the separate imputation capita
lizes on the measurable nature of both customer lifetime 
an purchase intensity. The first model predicts customer 
lifetime using Si, T0 and Xi (denoted by bT T(Xi |Si, T0)), 
whereas the second one estimates the purchase inten
sity using Si, T0 and Xi (denoted by bΛT(Xi |Si, T0)). After 
constructing the two surrogate models using the histori
cal data, we predict the lifetime and purchase intensity 
for customers in the experimental data using their 
observed short-term outcomes (Si, T0(Wi)) and pretreat
ment characteristics (Xi). We then combine these pre
dicted values by multiplication to create the surrogate 
index that will be used for CATE estimation and policy 
learning, that is,

beY
Sep
T (Xi |Si, T0(Wi)) � bT T(Xi |Si, T0(Wi))

× bΛT(Xi |Si, T0(Wi)), i ∈ E:

By design, the estimation of beY
Sep
T (Xi |Si, T0(Wi)) is unaf

fected by ξi(Si, T0 ,Xi), circumventing the high-variance 

issue stemming from the multiplicative noise pattern 
seen in (3).

4.3.3. Implementing Separate Imputation in Prac
tice. Our approach can be applied to various business 
contexts as long as the firm has access to historical data 
H that can be used to calibrate the two surrogate mod
els. In contractual settings, where customer churn is 
observable, creating two separate models is straightfor
ward, as both customer lifetime and average purchases 
per alive period can be directly calculated from the 
available data. In noncontractual settings, such as the 
one in our empirical application, customer churn is not 
immediately apparent, which means that the actual 
customer lifetime cannot be directly obtained from the 
data. In such contexts, we utilize established metrics 
like recency and frequency (derived from observed cus
tomer behaviors) to approximate customer lifetime and 
purchase intensity. In our application, we employ the 
last observed purchase time up to T as a proxy for T T

i , and 
the average number of purchases per period up to T i, T as a 
surrogate for the average purchase intensity ΛT

i .
While T T

i and ΛT
i may not flawlessly represent the 

true customer lifetime or purchase intensity (as custo
mers might churn after the last period of purchase), 
these metrics are useful proxies because (i) together, 
they provide sufficient information to infer customer 
lifetime and purchase intensity (Fader et al. 2005, 2010), 
and (ii) T T

i is largely reflective of customer lifetime (for 
example, customers who churn early typically show 
low recency), whereas ΛT

i correlates strongly with pur
chase intensity (such as high average purchases per 
period indicating consistent frequent buyers). There
fore, using these proxies for estimating surrogate index 
is a justified and practical approach to address the chal
lenge of inseparability in noncontractual settings.

To conclude, using beY
Sep
T (Xi |Si, T0(Wi)) as a substitute

for the actual outcome in CATE estimation presents sig
nificant benefits for addressing the challenges of long- 
term targeting. First, this approach results in less noise 
compared with using the actual long-term outcome, as 
it omits unpredictable variations that occur between 
T0 + 1 and T. Second, it enables valid inferences about the 
long-term treatment effect under Assumption 1. Last, 
using separate models for churn and purchase helps 
to more accurately assess the influence of short-term 
behavioral changes on long-term purchasing patterns. As 
illustrated in Sections 5 and 6, this separate imputation 
method outperforms other strategies commonly used by 
firms, including existing imputation techniques.

4.4. Potential Limitations and Implementation 
Considerations

Although the surrogate index method presents signi
ficant advantages, it is important to acknowledge its 
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limitations and the potential challenges encountered 
during implementation. Understanding these factors 
is essential for assessing the generalizability of the 
proposed approach and its applicability in different 
situations.

4.4.1. Existence of Less Noisy Surrogate Variables. Similar 
to Athey et al. (2019a), we use immediate outcomes 
per period as the surrogate variables in our empirical 
study. These variables can reflect potential long-term 
impact in two ways. First, being integral parts of Yi, T, 
they inherently capture parts of the long-term treat
ment effect. Second, changes in short-term behaviors 
can be indicative of shifts in long-term purchasing 
trends. For example, an intervention that enhances 
customer retention, thereby increasing long-term pur
chases, would likely result in a greater proportion of 
customers in the treatment group making nonzero 
short-term purchases due to reduced churn. Similarly, 
if the intervention encourages sustainable purchasing 
habits, an increase in short-term purchase frequency 
among treated customers would be observed, signal
ing the habit formation influenced by the intervention.

Surrogate variables of this kind are particularly bene
ficial in contexts where the outcome involves recurring 
activities such as repeat purchases or engagement, 
commonly seen in industries like retail, subscription 
media, food service, and transportation. However, for 
sectors characterized by long purchase cycles, like the 
automotive industry, finding valid surrogate variables 
can be challenging. In these cases, our method may be 
less applicable, as it can be difficult to detect short-term 
indicators. Furthermore, when short-term outcomes 
are also noisy (e.g., when the data are obscured for pri
vacy protection), the benefits of a surrogate index may 
not be significant. In such situations, the surrogate 
index method is not applicable given the lack of effec
tive surrogate variables.

4.4.2. Choice of Surrogates. The surrogacy assump
tion requires that short-term outcomes fully mediate the 
long-term treatment effect. When this condition is not 
met, the CATEs identified using the surrogate index 
may diverge from the actual CATEs, leading to poten
tial mistargeting errors (Yang et al. 2023). One way to 
mitigate the risk of surrogacy violation is to include a 
large number of surrogates (Athey et al. 2019a). For 
example, when addressing long-term outcomes such as 
repeated transactions, incorporating more periods into 
the surrogate index reduces the chances of violating 
this assumption. However, adding more periods also 
increases unexplained variations, which may decrease 
the effectiveness of targeting policies. This issue is for
mally characterized in the following.

Corollary 2 (Noise Accumulation of Surrogate Indices). 
Suppose that Assumption 1 holds. When we build two sur
rogate indices based on different periods of short-term out
comes, where T0 > T′0, it follows that

Var[eYT(Si, T0(Wi), Xi)] > Var[eYT(Si, T′0(Wi), Xi)]:

Corollary 2 and the surrogacy assumption highlight 
the tradeoff between information gain and noise accu
mulation for optimal targeting performance. Specifi
cally, including more periods of short-term outcomes 
improves the validity of the surrogacy assumption. 
However, it also introduces unexplained variations 
which in turn increase the mistargeting probability. 
Determining the optimal number of periods for esti
mating surrogate models requires empirical investi
gation, which is challenging due to the difficulty of 
directly testing the surrogacy assumption. In this paper, 
we address this question by comparing holdout target
ing performance across surrogate indices constructed 
using varying numbers of periods. Our simulations and 
real-world data analysis indicate that surrogate models 
with fewer periods may significantly improve targeting 
effectiveness, even though they might risk violating the 
surrogacy assumption.

4.4.3. Violation of Comparability Assumption. In this 
work, we construct surrogate indices using historical 
data. This method is based on the assumption that the 
relationships between short-term and long-term out
comes remain consistent across both historical and 
experimental data sets. This assumption is expected to 
be valid in our empirical analysis, as our experiment 
includes all newly acquired customers, who share char
acteristics with those in the historical data set, and the 
company’s product offerings and acquisition strategies 
remained unchanged. However, if the experiment tar
gets a specific subset of customers (like those acquired 
through a particular channel), additional adjustments 
may be necessary to ensure the surrogate models, 
developed from historical data, remain generalizable 
(Miratrix et al. 2018, Sahoo et al. 2022).

5. Empirical Performance:
Simulation Evidence

5.1. Simulation Setting
We first validate our solution using synthetic data. Our 
simulations consider a company implementing a mar
keting intervention with the aim to maximize total pur
chases (Yi, T) over a 10-week period (T�10) after the 
intervention. We generate experimental data (E) with 
accumulated unexplained variations over time. Specifi
cally, we assume that the intervention has a direct and 
heterogeneous impact on churn probability and pur
chase intensity during the first three weeks, and no fur
ther impact after the fourth week. For simplicity, we 
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assume that the unexplained variations in purchase 
intensity (while alive) are independent across time. 
Therefore, the noise accumulation is mainly driven by 
unexplained customer attrition. More details regarding 
the simulation setting and the noise accumulation beha
viors can be found in Online Appendices C.1 and C.2.

We also generate historical data (H) for 5,000 custo
mers using the data generating process for the control 
group, which reflects the company not implementing 
the intervention in the past. These data will be used 
to construct the surrogate models. For the main analy
sis, we select T0 � 3 periods for constructing the surro
gate index, ensuring compliance with the surrogacy 
assumption (Assumption 1). Additionally, we vary the 
number of periods in constructing the surrogacy index 
to explore the balance between gaining information 
and accumulating noise. The model specifications for 
creating surrogate indices are detailed in the Online 
Appendix C.5.

5.2. Comparison Methods
5.2.1. Alternative Imputation Methods. We compare 
our separate imputation approach to various imputa
tion methods for surrogate index construction. The 
first technique we examine is the single imputation 
approach proposed by Athey et al. (2019a) and Yang 
et al. (2023). In this method, the outcome variable 
(Yi, T) is regressed directly onto the short-term signals 
(Si, 1, : : : , Si, T0 ) and the preintervention covariates (Xi). 
However, this imputation approach does not account 
for the inseparable nature of unexplained variations 
stemming from customer attrition. As a result, this 
model offers a less accurate estimation for the impact 
of short-term outcomes on Yi, T compared with the 
separate imputation technique.

We also examine the beta-geometric (BG)/NBD 
model with covariates (Fader and Hardie 2007) as an 
alternative imputation approach. This model has not 
been traditionally suggested as an imputation tech
nique in the surrogate index literature, but it could be a 
reasonable candidate in our context because it has been 
shown to be effective in capturing unobserved hetero
geneity in customer attrition and purchase intensity. 
The accuracy of the BG/NBD model, along with similar 
variants like the Pareto/NBD model, heavily depends 
on the distributional assumptions and the assumed 
functional forms of the relationship between customer 
covariates. Consequently, in situations where the rela
tionship between observed covariates and the hetero
geneity of treatment effects is intricate, we expect the 
BG/NBD model to underperform when contrasted 
with more flexible frameworks, such as nonlinear 
regressions or machine learning models.

5.2.2. Alternative Variance Reduction Methods. In 
addition to using alternative imputation methods to 

obtain the surrogate index, we investigate other tech
niques to reduce the variance in CATE estimation. One 
such technique is to explicitly regularize the CATE 
function during the estimation process. Here, we use 
R-learner with lasso regularization when estimating
CATE function (Nie and Wager 2021) to study the
effectiveness of regularization as a potential solution.
Although regularization can reduce the variance of
CATE models, it can also introduce significant under
fitting bias (Hastie et al. 2009)—The penalty term from
regularization may cause the model to overlook crucial
data patterns, which can be particularly problematic
when dealing with a small training sample with large
unexplained variations.

Another obvious alternative to reduce variance is 
to increase the sample size of the experiment data. 
Although this is straightforward to evaluate when 
using synthetic data, this is not a feasible or optimal 
solution for enhancing targeting policies in practice. 
First, the number of customers who qualify for the 
intervention is often limited, which limits the sample 
size available to most firms.4 Second, even when com
panies can increase the experimental sample size, the 
rate at which the variance of CATE decreases with 
respect to sample size can be considerably slow when 
the noise level is high. Nonetheless, we incorporate 
this alternative approach in our simulation analysis to 
evaluate the potential advantages of scaling the experi
ment, as opposed to employing different dependent 
variables for CATE estimation.

5.2.3. Baseline Approaches. Finally, we examine two 
baseline methods commonly used in practice: the 
default approach and the myopic approach. The default 
approach targets customers based on their actual long- 
term outcome, Yi, T. This approach is the simplest and 
most common, but it is expected to be ineffective due 
to the substantial unexplained variations in Yi, T. The 
myopic approach targets customers based on their 
short-term performance, Yi, T0 �

PT0
t�1 Si, t (i.e., based on

their behavior only a few periods right after the inter
vention). This approach can avoid noise accumulation 
(as there is less unexplained variations in behavior up 
to T0), but it may not yield optimal performance 
because it disregards the disparities between short- 
term and long-term treatment effects.

5.3. Evaluation Procedure
We assess targeting performance through 200 boot
strap replications and report the mean and standard 
deviation of key metrics. In each replication, we first 
create a training and a validation set. For each of the 
approaches considered, we use the training set to 
construct a CATE model bτŸ(Xi) using Ÿ as the depen
dent variable (e.g., Ÿ � Y10 for the default approach, 
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Ÿ � beY
Sep
T for the proposed approach, etc.). We then cal

culate the area under the targeting operating charac
teristic curve (AUTOC) (Yadlowsky et al. 2021) using 
the actual long-term outcome (Yi, T) on the validation 
set.

Specifically, AUTOC is constructed as follows. Given 
the predicted CATEs bτŸ(Xi), the targeting operator char
acteristic (TOC) for Yi, T is defined as

TOC(φ;bτŸ) � E[Yi, T(1)�Yi, T(0) |Fbτ Ÿ
(bτŸ(Xi)) ≥ 1�φ]

�E[Yi, T(1)�Yi, T(0)],

where Fbτ Ÿ 
is the cumulative distribution function of the 

predicted CATEs. The TOC measures the incremental 
gains from targeting the top φ × 100% customers, as the 
difference in ATE between customers in the top φ ×
100% CATE group and all customers. Then, the AUTOC 
is defined as

AUTOC(bτ) �
Z 1

0
TOC(φ;bτ)dφ:

A model bτŸ is better than another model bτŸ′ in identi
fying customers in the top φ × 100% CATE group if 
TOC(φ;bτŸ ) > TOC(φ;bτŸ ′ ). The AUTOC is a useful met
ric for evaluating the effectiveness of a CATE model 
because it quantifies how well the model ranks units 
based on their treatment effect, with a higher AUTOC 
indicating a more effective targeting (or treatment pri
oritization) rule.

5.4. Results
Table 1 shows the AUTOC values of different ap
proaches. Each row corresponds to CATE models for a 
specific outcome variable, and the columns indicate 
the two methods used for CATE estimation and the 
two training sample sizes (n� 1,000 and n� 50,000). In 
Online Appendix C.6, we also provide the results from 
other CATE models (including S-learner and T-learner) 
to corroborate that our findings are not driven by a par
ticular CATE model.

In the scenario of a small sample size (n� 1,000), there 
are several important findings. First, all the methods 

that use short-term proxies as the dependent variable for 
CATE estimation have superior AUTOC performance 
(both higher mean values and smaller standard devia
tions) than the default approach. This implies that rely
ing on short-term signals rather than the actual long- 
term outcome can significantly improve the effective
ness of targeting. Second, the separate imputation 
method consistently achieves the highest performance 
(highest AUTOC means with smallest standard devia
tions), regardless of models being used to estimate 
CATEs. In contrast, the single imputation performs 
worse than other short-term approaches. This finding 
highlights the importance of separating churn an pur
chase when creating a surrogate index. Third, although 
the BG/NBD technique fares better than using the 
actual outcome, it falls short of the performance 
achieved by the separate imputation method. This can 
be attributed to the BG/NBD approach being less effi
cient when the relationship between observed charac
teristics and key parameters of interest is complex, as it 
is the case in our simulation.

Next, we highlight the efficiency of the proposed solu
tion with respect to sample size. In situations where 
separate imputation is applied to small experimental 
data (n� 1,000), its performance (AUTOC � 0:88 for both 
methods) nearly matches the performance observed with 
50 times larger data sets (AUTOC � 0:92 without regular
ization and AUTOC � 0:93 with regularization). Notably, 
the difference in AUTOCs between the small and large 
data sets is lower for the separate imputation method 
compared with other strategies, which highlights the 
sample size efficiency of our proposed solution. Further
more, when using a nonregularized CATE model, using 
short-term proxies for targeting within a small experi
mental data set yields better performance with AUTOC 
scores between 0.83 and 0.88, compared with the stan
dard approach trained on a significantly larger data set, 
which achieves an AUTOC of 0.73. Taken together, these 
results make a strong case for the separate imputation 
technique, highlighting its ability to achieve near-optimal 
performance even with significantly fewer data points 
compared with larger datasets.

Table 1. Comparison of AUTOC Values for Different Outcomes and CATE Models

Outcome Ÿ

N � 1,000 N � 50,000

Without regularization With regularization Without regularization With regularization

Separate imputation 0.88 (0.04) 0.88 (0.13) 0.92 (0.02) 0.93 (0.02)
Single imputation 0.83 (0.09) 0.63 (0.40) 0.91 (0.02) 0.91 (0.02)
BG/NBD imputation 0.84 (0.07) 0.78 (0.30) 0.91 (0.02) 0.93 (0.02)
Myopic (Yi, 3) 0.85 (0.06) 0.81 (0.28) 0.91 (0.02) 0.93 (0.02)
Default (Yi, 10) 0.55 (0.30) 0.31 (0.45) 0.73 (0.04) 0.92 (0.02)

Notes. Higher AUTOC reflects better prioritization rule. We average the results over 200 replications and show in parentheses the standard 
deviation. We use Causal Forest as the CATE model without regularization and R-learner with lasso regularization as the model with 
regularization. The performance of different CATE models is provided in Online Appendix C.6.
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Finally, it is noteworthy that the performance of the 
R-lasso remains consistent across all methods when 
working with a large experimental data set (n� 50,000). 
This result suggests that when there is an abundance of 
samples, regularization can effectively address the noise 
accumulation challenge. However, in smaller sample set
tings, applying regularization to CATE models for the 
default approach can lead to a significant drop in target
ing performance, with the AUTOC value plummeting to 
0.31. Such an outcome is driven by R-lasso’s inclination 
to underestimate treatment effect heterogeneity, particu
larly in contexts with limited data.5 Hence, firms should 
not depend exclusively on regularization for mitigating 
noise accumulation—Its effectiveness may realize only 
when dealing with large-scale experiments.

5.5. Tradeoff Between Information Gain and 
Noise Accumulation

In the previous section, we emphasize cases where 
we incorporate only the minimal set of short-term out
comes (T0 � 3) to meet the surrogacy assumption 
(Assumption 1(1)). However, verifying the surrogacy 
assumption in real-world applications is challenging, 
and companies must balance between information 
capture and noise accumulation when determining the 
number of periods to include in the surrogate index. 
Although incorporating more periods into the surro
gate model could help fulfill the surrogacy assump
tion, it might also increase unexplained variations, 
potentially diminishing the targeting effectiveness (as 
discussed in Section 4.4.2).

We explore this tradeoff with our simulated data, 
simulating a real-world situation where firms deter
mine the number of surrogates to include in their surro
gate model. Specifically, we construct eight distinct 
surrogate models, each using a different number of 
short-term outcomes (ranging from T0 � 1 to T0 � 8) 
using the separate imputation approach. Following 
this, we generated 200 bootstrap replications and report 
the average and standard deviations of the AUTOC for 
each model. Figure 4 presents the results corresponding 
to the number of periods ranging from T0 � 1 to T0 � 8.

The inverted U-shaped relationship in Figure 4
reflects the tradeoff between information gain and 
noise accumulation. As we increase T0 from one to 
three periods, the AUTOC improves because the inter
vention has a direct impact until the third week. How
ever, the AUTOC starts to decline once we include 
behaviors beyond the third period (after satisfying sur
rogacy). This pattern is consistent with the guidance 
provided by Athey et al. (2019a) and Yang et al. (2023), 
recommending that companies should use the smallest 
set of short-term outcomes to create surrogate models, 
provided that the surrogacy assumption holds.

Interestingly, models using only one or two periods 
of information (where the surrogacy assumption is 

violated) outperform the default approach. This sug
gests that the benefits of noise reduction can outweigh 
the drawbacks of information loss. In other words, if the 
outcome of managerial interest (in our case, long-term 
cumulative purchases) has significant unexplained var
iations, violating the surrogacy assumption might not 
be the major concern. In turn, firms can improve target
ing performance by using short-term outcomes in the 
surrogate models, even if these short-term behaviors do 
not capture the full impact of the intervention.

6. Empirical Performance: Real-World
Application

This section evaluates the effectiveness of our pro
posed method using data from a retail technology 
company in Taiwan, as detailed in Section 2. We begin 
by offering additional information about the customer 
covariates, followed by an empirical demonstration of 
the noise accumulation issue. Last, we showcase how 
our proposed solution effectively identifies the most 
responsive customers, thereby enhancing profitability.

6.1. Observed Customer Covariates
The company gathered a collection of customer co
variates at the time of their initial purchase. This set 
included information about their first transaction, such 
as total sales, item count, and product categories, as well 
as the location of the purchase (for example, a public- 
access vending machine) and whether the customer was 
referred by a friend. Given that these data are accessible 
to the company prior to the execution of the interven
tion, it can be used to estimate CATEs and determine 
whom to target. Table 2 presents the summary statistics 

Figure 4. (Color online) Tradeoff Between Information Gain 
and Noise Accumulation: An Analysis of Causal Forest 
AUTOCs with Surrogate Index Constructed Using Different 
Periods 

Notes. Each point reports the average over 200 simulation replica
tions together with the one standard deviation interval. The dashed 
line represents the mean AUTOC of the default approach. We used 
1,000 customers in the training set. We present here the results of 
using Causal Forest, but our findings are robust across different 
CATE models. See Online Appendix C.8 for the results of different 
CATE models.
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of these variables for both the treatment and control 
groups. To maintain the company’s privacy, all data 
points have been standardized. The results confirm suc
cessful randomization, as no significant differences exist 
between the groups in any of the provided variables.

6.2. Evidence of Noise Accumulation
As discussed in Section 3.1, long-term outcomes often 
accumulate unexplained variations that deteriorate the 
accuracy of CATE models, leading to suboptimal tar
geting. In this section, we provide empirical evidence 
of the noise accumulation behavior in our specific 
context.

First, to determine the portion of the variability in 
Yi, T that can be explained by Xi and Wi, we construct 
a regression forest model that correlates Yi, T with Xi 
and Wi. We then estimate the unexplained variations 
by calculating the absolute differences between the 
actual purchases and their predictions from the model. 
Figure 5 shows the unexplained variations in total pur
chases over T periods, ranging from T�1 through 
T�10. In the figure, the dot indicates the median, and 

the gray shaded region covers the top and bottom 10% 
of values of the distribution of unexplained variations. 
Notably, the unexplained variations increase as the 
duration of the observation period extends.

Next, we demonstrate the positive serial correla
tions of unexplained variations across different peri
ods. Using a similar approach, we create a regression 
forest model, bE[Si, t |Xi, Wi], to predict the number of 
purchases for each period. The residuals, bεS

i, t � Si, t�
bE[Si, t |Xi, Wi], indicate the unexplained variations in 
Si, t. We then examine the cross-correlation of these 
residuals, Cor(bεS

i, t1
,bεS

i, t2
). Figure 6 presents a consistent 

positive correlation between the residuals for each 1 ≤
t1 < t2 ≤ 10 highlighting a significant noise accumula
tion issue in our empirical context. As highlighted in 
Section 3.1, the observed positive correlation is typi
cally attributed to unobserved heterogeneity and attri
tion, both of which are highly likely to occur in this 
empirical context.

6.3. Empirical Analysis
Similar to our analysis in Section 5, we assess the effec
tiveness of our targeting approach against various alter
natives. Specifically, we compare it to the default and 

Table 2. Pretreatment Covariates and Comparison Across Two Experimental Conditions

Variable Treatment (N � 889) Control (N � 964) Difference p value

log(Sales) in the first transaction �0.0205 0.0182 0.601
log(Quantity) in the first transaction 0.0034 �0.0031 0.930
Was the first-visit fridge open to public? 0.0035 �0.0031 0.859
Did the first purchase include any side dish item? 0.0023 �0.0020 0.865
Did the first purchase include any dessert item? 0.0002 �0.0002 0.990
Did the first purchase include any beverage item? 0.0191 �0.0169 0.332
Did the first purchase include any lunch box item? 0.0128 �0.0114 0.461
Did the first purchase include any item from other categories? 0.0036 �0.0032 0.697
Was the customer referred by another customer? �0.0016 0.0015 0.916

Notes. All continuous variables were first standardized with mean zero and variance one. All binary variables were first subtracted by the mean 
of all customers. We use the log scale for sales and quantity to create CATE models, as outliers in these variables may impact the performance of 
CATE models. However, there is no significant difference for the two variables in the original scale.

Figure 5. (Color online) Unexplained Variations in Yi, T for 
T � 1, : : : , 10 

Notes. Each dot illustrates the median of unexplained variations for 
all customers in the experimental data. The gray shaded area presents 
the range between the highest 10% and the lowest 10% of these 
variations.

Figure 6. (Color online) Cross-Correlation Matrix of Unex
plained Variations in Each Period 

Note. All correlation coefficients reported are significantly nonzero 
with p < 0.01.
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myopic approaches, as well as two other imputation 
methods: single imputation and the BG/NBD model.6

We created surrogate indices using historical data 
from customers who were acquired at least 10 weeks 
before the experiment began (n� 4,031 customers), 
ensuring that sufficient historical data are available to 
model the relationship between short- and long-term 
outcomes.7 In all approaches, we use the first-week 
short-term outcome (i.e., Si, 1) to estimate the surrogate 
indices. We determine the number of short-term peri
ods empirically. (See Online Appendix D.7 for details 
and complete set of results.)

6.3.1. Validation Approach and Key Metrics. To assess 
the targeting performance of each approach, we use a 
bootstrap validation scheme similar to that of Ascarza 
(2018). Specifically, we generate B� 500 data splits con
sisting of training (70%) and validation (30%) sets. In 
each split, we estimate CATE models using the training 
set, with distinct outcome variables (Ÿ) serving as the 
dependent variable. Then, we predict the correspond
ing CATEs (bτŸ ) for customers in the validation set.

Using the predictions for validation customers, we 
evaluate the effectiveness of each targeting approach 
based on two widely used metrics: the GATEs across 
predicted CATE quintile groups and the expected profit 
gained by targeting customers with positive predicted 
CATEs.

6.3.1.1. GATEs by Predicted CATE Levels. Similar 
to the analyses presented in Section 2, we start by divid
ing validation customers into quintile groups based on 
their predicted CATEs (bτŸ ), with Q1Ÿ having the highest 
predicted CATEs and Q5Ÿ having the lowest predicted 
CATEs. Next, we calculate the GATE for each quintile 
group using the actual long-term outcome (Yi, 10):

dGATEY10(Q
Ÿ
k )

�

P
i: i∈QkŸ ,Wi�1

Yi, 10

| {i : i ∈QŸ
k , Wi � 1} |

�

P
i: i∈QkŸ ,Wi�0

Yi, 10

| {i : i ∈QkŸ,Wi�0} | :

6.3.1.2. Expected Profitability of Targeting Poli
cies. To compute expected profitability, we consider a 
policy that targets customers with positive predicted 
CATEs (i.e., πŸ(Xi) � 1{bτŸ(Xi) > 0}) and calculate the 
expected purchase counts in the next 10weeks using the 
inverse-probability-weighted (IPW) estimator (Horvitz 
and Thompson 1952). Specifically,
bV(πŸ)

�
1

|Validation Set | ·
X

i∈Validation Set

1[Wi � πŸ(Xi)]

bP[πŸ(Xi) �Wi]

!

Yi, 10,

(4) 

where bP[πŸ (Xi) �Wi] is the (estimated) propensity score 
for customers who are assigned the same treatment by 
πŸ as in the actual data.8 Although the treatment assign
ment in the data are random and independent of the 
derived targeting policy, we use IPW adjustment to 
account for any possible imbalances between treated 
and nontreated customers because the sample used 
for profit evaluation (i.e., validation customers who 
were assigned the same treatment in the actual data as 
πŸ assigns for policy evaluation) is relatively small. 
The IPW adjustment is also frequently used in other 
marketing literature that uses randomized controlled 
experiments for policy evaluation (Hitsch et al. 2023, 
Yoganarasimhan et al. 2023).

We then calculate the expected profit under policy 
πŸ using the following formula:

Profit(πŸ ) �AOV ·
"

p · bV(πŸ)� d ·
PN

i�1π
Ÿ (Xi)

N

!

·UW�1 � d · 1�
PN

i�1π
Ÿ(Xi)

N

!

·UW�0

#

, 

where AOV is the average order value,9 p is the average 
profit margin, d � 15% is the discount the coupon pro
vided, UW is the average number of coupons being used 
under the treatment condition W, and 

PN
i�1
πŸ (Xi)

N calcu
lates the proportion of customers being treated under 
policy πŸ .

When assessing the profitability of different ap
proaches, we also investigate the policy learning 
approach for determining targeting policies. As dis
cussed in Section 3.2, using the actual long-term out
come for policy construction could lead to issues with 
noise accumulation. To address this, one could incor
porate our proposed method into policy learning. This 
involves replacing the actual long-term outcome with 
a proxy that has reduced variance and subsequently 
applying policy learning using this proxy as the out
come variable.

Specifically, we use the doubly robust policy learn
ing technique introduced by Athey and Wager 
(2021). Our method involves several steps: First, we 
estimate the doubly robust (DR) scores using various 
outcome variables (Ÿ) as the proxy for CATE. We 
then develop targeting policies (πŸ ) by creating cost- 
sensitive classifiers that predict which customers 
would have positive DR scores, using the DR score 
itself as the misclassification cost. Finally, we com
pute the expected profit improvement for each pol
icy. Detailed information on the implementation is 
available in Online Appendix D.3.
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6.4. Empirical Results
6.4.1. GATEs by Predicted CATE Levels. Figure 7
shows the GATEs by predicted CATE groups. As dis
cussed in Section 2, the U-shaped curve generated by 
the default approach indicates that the CATE model for 
Yi, 10 is unable to identify customers with the highest or 
lowest incremental effects. In contrast, all models that 
use short-term signals to estimate CATEs are more 
effective at ranking customers’ long-term treatment 
effect than the default method.

Among all these models, the separate imputation 
method produces the best targeting performance as it 
generates the steepest curve. Specifically, the GATE for 
Q1Ÿ (representing the most sensitive customers identi
fied by the method) is much larger than that of Q2Ÿ , 
larger than that of Q3Ÿ , and so on. Conversely, the 
BG/NBD model yields the least favorable result among 
all the proxies. This finding aligns with our intuition 
that the BG/NBD approach is likely to be ineffective 
when the parametric specifications of key parameters 
are different from the actual relationships, which is 
likely to be the case in this empirical application.

6.4.2. Profitability of Targeting Policies. We compare 
the expected profit of each targeting policy, denoted by 

πŸ (as described in Section 6.3.1), with the profit the 
company would obtain if it ran a uniform policy, π0, 
which applies the best intervention uniformly to all 
customers. In our scenario, given that the average treat
ment effect is positive, π0 involves sending three cou
pons to every customer. Specifically, we define the 
profit improvement (PI) for each targeting approach as: 
PI(πŸ ) � Profit(πŸ )

Profit(π0)
� 1, where Profit(π0) is calculated in

the same way as Profit(πŸ).
Table 3 presents the results of different approaches. 

The first column, labeled “Predicted CATEs,” illustrates 
the profit improvement achieved when targeting rules 
are based on predicted CATEs.10 The second column, 
labeled “Policy Learning,” details the profit improve
ment attained by using the doubly robust policy learn
ing approach with various outcome variables.

Several key results are worth highlighting. First, con
sistent with our simulation results, the separate impu
tation approach (shown in the first row) consistently 
delivers the highest expected profits, whether we use 
predicted CATEs or policy learning for targeting. In 
contrast, the default method (last row) consistently 
leads to a loss in profit. This suggests that basing target
ing decisions on predicted CATEs derived from actual 
long-term outcomes can detrimentally affect the long- 

Figure 7. (Color online) Actual GATEs by Predicted CATE Levels for Different Outcome Variables 

Notes. Each point represents the mean of bootstrap results on the validation customers together with the one standard deviation interval. Groups 
QŸ

1 , : : : ,QŸ
5 are categorized based on the decreasing order of treatment effects predicted by CATE models for various outcome variables. GATEs 

are computed on the actual long-term outcome (Yi, 10). We present the results from T-learner as it gives the best targeting profitability. Our find
ings are robust across different CATE models. See Online Appendix D.5 for the results from other CATE models.

Table 3. Expected Profit Improvement: Targeting Based on Predicted CATEs or 
Targeting Using Policy Learning Based on Different Outcome Variables

Outcome variable Ÿ Predicted CATEs Policy learning

Separate Imputation 5.81% (4.19%) 4.57% (3.90%)
Single Imputation 4.06% (4.51%) 3.66% (4.75%)
BG/NBD Imputation 0.95% (2.77%) �0.26% (4.36%)
Myopic 3.34% (3.60%) 3.51% (4.58%)
Default �3.52% (3.17%) �3.44% (3.37%)

Notes. We average the profit improvement over 200 replications and show in parentheses the 
standard deviations. For the “Predicted CATEs” approaches, we present the results from T-learner as 
it gives the best targeting profitability. Our findings are robust to using different CATE models.
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term profitability, highlighting the substantial impact 
of noise accumulation. Interestingly, the myopic ap
proach (fourth row) also mitigates much of the profit 
loss caused by high noise levels. This suggests that in 
certain scenarios, using less information—such as fewer 
observed periods—can, paradoxically, lead to better out
comes for long-term profitability.

Second, the separate and single imputation methods 
(first and second rows, respectively) outperform the 
myopic strategy in terms of profit. This highlights the 
importance of connecting short-term and long-term 
outcomes. However, the BG/NBD model (third row) 
falls short in performance compared with other short- 
term proxies, suggesting that flexible machine learning 
methods may be more advantageous in our empirical 
context. Last, the results obtained from policy learning 
are marginally less effective than those based on pre
dicted CATEs, potentially due to the lower accuracy of 
the doubly robust scores compared with the predicted 
CATEs from the CATE model.

7. Conclusion and Future Directions
Firms often leverage targeted interventions to improve 
their business outcomes. An increasingly popular ap
proach is to combine experimentation (or A/B testing) 
and customer data to predict each customer’s sensitiv
ity to an intervention. However, our research—both 
from theoretical and empirical perspectives—shows that 
this method can be ineffective in situations where out
comes are the result of recurrent behaviors that accumu
late unexplained variations over time. To address this 
challenge, we propose a new targeting strategy that 
emphasizes reducing the noise in outcome variables prior to 
estimating CATE models. This method enhances the 
precision in estimating customers’ long-term sensitivity 
to interventions, thereby significantly improving target
ing efficacy.

Specifically, our proposed solution involves develop
ing a surrogate index using separate imputation to effec
tively address the challenge of estimating long-term 
CATE. This method uses short-term behavioral changes 
to infer long-term treatment effects while distinctively 
accounting for the dynamics of customer attrition and 
purchase intensity. As a result, it effectively reduces 
the impact of unexplained variations when estimating 
CATE for long-term outcomes, offering significant per
formance improvements over current methodologies. 
Our solution is readily applicable using commonly acces
sible machine learning algorithms, rendering it practical 
for a broad range of businesses, spanning industries with 
both contractual and noncontractual customer relation
ships. By capitalizing on their existing historical purchase 
data, companies can improve their targeting strategies 
without the need for expanding the size of their experi
ments, thus avoiding extra costs.

We evaluate our proposed solution using both simu
lation analyses and a real-world marketing campaign, 
demonstrating superior targeting performance com
pared with existing practices. Our results also highlight 
the tradeoff between information gain and noise accu
mulation, emphasizing the importance of balancing 
these factors when determining the optimal number of 
short-term outcomes to include in a surrogate index 
model. Our findings indicate that when the long-term 
outcome is notably noisy, using a smaller set of short- 
term outcomes can outperform targeting strategies 
based on predicted CATEs of the actual long-term out
come, even in scenarios where the short-term outcomes 
do not entirely explain the long-term treatment effect. 
In practice, companies can conduct empirical testing to 
determine the most effective number of short-term out
come periods for inclusion in their surrogate models, 
thus maximizing their targeting performance.

Although our research provides valuable insights and 
solutions, there are limitations that suggest directions 
for future research. First, our proposed solution directly 
addresses the issue of unobserved heterogeneity in cus
tomer attrition and purchase intensity, which is preva
lent in various marketing contexts (Fader and Hardie 
2010, Ascarza et al. 2018a). However, other dynamics 
can cause more unexplained variations in the outcome 
variable, such as customer inertia and variety-seeking 
(Bawa 1990), state dependence (Roy et al. 1996, Dubé 
et al. 2010), or consumer learning (Erdem and Keane 
1996). Incorporating these behaviors explicitly into sur
rogate models may further mitigate unexplained varia
tions and enhance targeting performance. Furthermore, 
there are different modeling approaches available to con
nect the relationship between short-term and long-term 
outcomes, especially when we have multiple points in 
time for interventions. For example, Mazoure et al. (2021) 
proposes an innovative reinforcement learning frame
work that optimizes long-term customer engagement by 
combining immediate rewards with an estimate of resid
ual value derived from future product usage. Thus, future 
research could explore the integration of these dynamics 
and develop new modeling approaches for surrogate 
index construction to enhance targeting performance.

Second, when the long-term outcome is a repeated pur
chase measure, it is natural to use short-term purchases 
after the intervention for surrogate index construction. 
However, when firms have different long-term objectives, 
there may not exist obvious short-term signals to use as 
surrogates. Therefore, it is essential to develop a general 
surrogate selection procedure and document potential 
surrogate outcomes for various marketing applications. 
For example, Han et al. (2021) proposes an estimation 
method to quantify the percentage of the long-term treat
ment effect that short-term surrogates can explain. Addi
tionally, Yoganarasimhan et al. (2023) provides evidence 
that short-term conversion on subscription can be an 
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effective low-variance proxy for long-run revenue, and 
Wang et al. (2022) documents potential surrogate out
comes for the long-term user experience in the context of 
content recommendation. Future research could focus on 
identifying appropriate surrogate outcomes for different 
marketing contexts and developing methods to evaluate 
the effectiveness of these surrogates in improving target
ing performance.

Third, there may be scenarios where no surrogate out
come is available for noise reduction, such as when the 
objective is to directly optimize a short-term outcome 
with significant unexplained variations. In such cases, 
future research could explore the development of 
new CATE models that are more resilient to noise in the 
outcome variable. For example, Huang and Ascarza 
(2023) proposes an iterative error correction procedure 
to improve CATE estimation when the data are inten
tionally masked by large noise for privacy protection. 
Furthermore, it would be worthwhile to investigate how 
to incorporate the estimation uncertainty of CATEs into 
the targeting strategy and determine whether it can fur
ther enhance the profitability of a marketing campaign.

Finally, the proposed imputation strategy relies on 
state-of-the-art machine learning methods to predict 
future purchases based on observed short-term beha
viors. However, machine learning models may also 
overfit large unexplained variations in historical data, 
resulting in inaccurate long-term outcome predic
tions. Future research could explore alternative impu
tation strategies that are more robust to data noise. For 
instance, Padilla et al. (2023) proposes a Bayesian 
approach to predict purchase likelihood by incorpo
rating information from intermediate stages in the 
customer journey. It would be worthwhile to investi
gate whether their approach can further mitigate the 
impact of unexplained variations in historical data.
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Endnotes
1 We use 10 weeks to align with the time frame used by the focal firm 
when considering future purchases for newly acquired customers.

2 Figures 2 and 3 present the results of using the X-learner to esti
mate CATE. The results are consistent across various CATE models, 
including Causal Forest, T-learner, and S-learner, as detailed in 
Online Appendix D.4.
3 This proposition also holds in the case where the firm aims to tar
get customers with treatment effects larger than a certain threshold. 
See Online Appendix A for details.
4 Simester et al. (2022) propose an approach to calculate the sample 
size required to train and certify targeting policies.
5 To provide additional context, in approximately 60% of the boot
strap replications, the default method of R-lasso generated the same 
CATE prediction (which was equal to the ATE) for all consumers. 
This suggests a notable underestimation of the heterogeneity in 
treatment effects.
6 Unlike in simulations, we cannot substantially increase the sample 
size in a real-world context due to the finite number of customers 
the firm could acquire over time. Furthermore, we omit the results 
of the R-learner with lasso regularization, as it yielded identical 
CATE predictions for all customers. This result was expected, con
sidering the limited sample size and the substantial unexplained 
variations present in the data.
7 We use random forest and BG/NBD to construct those surrogate 
models, which are described in detail in Online Appendix D.1.
8 We estimate this quantity in each iteration using the probability 
forest implemented by the grf package.
9 We did not observe a significant difference in AOV between the 
treatment and control groups (mean difference� $0.05 with a p value 
of 0.88).
10 We present the results when using a T-learner to compute 
CATEs. For robustness, results from alternative CATE estimation 
methods are provided in Online Appendix D.6, which show consis
tent findings.
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Online Appendix
A. Proofs
In this appendix we present the proofs of the theoretical results presented in the main document.

A.1. Positive Serial Correlation of Unexplained Variations Due to Attrition

We first prove the positive serial correlation property in Section 3.1.2. To recap, the unexplained variation

for period t can be written as εSi,t = 1 [i remains active at t]ηS
i,t − 1 [i has churned at t] · E[Si,t(Wi)|Xi].

Note that for t1 < t2, we have

E
[
εSi,t1ε

S
i,t2

]
= θt2(Wi|Xi)E

[
ηS
i,t1

]
E
[
ηS
i,t2

]︸ ︷︷ ︸
If alive in both t1 and t2

+

[θt1(Wi|Xi)− θt2(Wi|Xi)]E
[
ηS
i,t1

]
E [Si,t2(Wi)|Xi]︸ ︷︷ ︸

If alive in t1 but churned in t2

+

[1− θt1(Wi|Xi)]E [Si,t1(Wi)|Xi]E [Si,t2(Wi)|Xi]︸ ︷︷ ︸
If churned in t1

.

Besides, we have

E
[
εSi,t1

]
E
[
εSi,t2

]
=
{
θt1(Wi|Xi)E

[
ηS
i,t1

]
− [1− θt1(Wi|Xi)]E [Si,t1(Wi)|Xi]

}
×{

θt2(Wi|Xi)E
[
ηS
i,t2

]
− [1− θt2(Wi|Xi)]E [Si,t2(Wi)|Xi]

}
.

Combining this two terms, we can derive the covariance:

Cov
[
εθi,t1 , ε

θ
i,t2

]
=E

[
εSi,t1ε

S
i,t2

]
−E

[
εSi,t1

]
E
[
εSi,t2

]
= [1− θt1(Wi|Xi)]

{
E [Si,t1(Wi)|Xi] +E

[
ηS
i,t1

]}
θt2(Wi|Xi)

{
E [Si,t2(Wi)|Xi] +E

[
ηS
i,t2

]}
≥ 0.

since every term in the above equation is larger than zero.

A.2. Proof for Theorem 1

A.2.1. Class of CATE Estimation. We start by describe the class of CATE estimators we consider

here in the theoretical analysis.

ASSUMPTION APP-2. (Class of CATE Estimator) For a given individual with covariates xnew, the

predicted CATE τ̂(xnew|Do,Dℓ,Dm) can be expressed as the difference between two (adjusted) outcome

estimators, µ̂0 and µ̂1, in the following form:

µ̂w(xnew) =
∑

i∈Io:Wi=w

ℓ̂wi (xnew|Dℓ)[Yi − m̂w(Xi|Dm)],

where Io denotes the set of individuals used to impute the two outcome predictions, Dℓ = {X ℓ,Yℓ,Wℓ}
represents the data used to construct the weight function ℓ̂wi (xnew|Dℓ), and Dm = {Xm,Ym,Wm} is the

data used to determine the adjustment function m̂w(Xi|Dm). We also denote Do = {X o,Yo,Wo} as the

experiment data of individuals in Io, Furthermore, we assume that the estimation process of the CATE

model satisfy the following conditions:
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Huang and Ascarza: Doing More with Less App-2

1. (Honest Estimation) The weight function for individual j is independent of Yj given Xi, ∀j ∈ Io.

2. (Cross Fitting) The adjustment function for individual j is either zero or constructed from the dataset

Dm that is independent of (Xj, Yj).

For the theoretical analysis, we also assume that adjustment function, m̂w(x|Dm), can be written as

m̂w(Xi|Dm) =
∑

j∈Dm Sj(x)Yj , where Sj is (i) independent of any outcome information or (ii) can be rep-

resented as the weight of a potential n-nearest-neighbors estimator as described in Definition 7 in Wager

and Athey (2018). Note that (i) includes methods such as kernel regression, while (ii) is specifically relevant

for tree-based methods like Causal Forest.

Next, we show that the class of CATE estimators include a wide variety of commonly-used CATE models,

such as S-learner, T-learner, Causal Forest, and R-learner.

PROPOSITION APP-1. The following CATE estimators belong to the class described in Assump-

tion App-2:

1. S-learners and T-learners Künzel et al. (2019) with the outcome models being OLS regressions, ridge

regressions, k-nearest neighbors, or random forests with honest estimation.

2. R-learners (Nie and Wager 2021) with the CATE predictor and the first-stage conditional mean model

being OLS regressions, ridge regressions, k-nearest neighbors, or random forests with honest estima-

tion .

3. Causal Forest with honest estimation.

Proof: Let D= {(Xi,Wi, Yi)}Ni=1 be the training set for CATE prediction.

1. We provide a proof for S-learners using (a) high-dimensional ridge regression (the proof for OLS

estimators is similar), (b) k-nearest neighbors, and (c) random forests with honest estimation as the

outcome model. We omit the proofs for T-learner as they are similar to the proofs for S-learner.

(a) High-dimensional Ridge Regression:

Consider the ridge regression model Yi = ϕ(Xi,Wi)
′β + εi, where ϕ(Xi,Wi) is a high-dimensional

feature transformation function used to construct a ridge regression estimator.

Let Φ= [ϕ(X1,W1) · · ·ϕ(XN ,WN)]
′ denote the feature matrix. Then, the closed-form solution of the

ridge coefficient with regularization term λ can be written as:

β̂= (Φ′Φ+λI)−1Φ′y.

Denote pi be the i-th row of the matrix (Φ′Φ+ λI)−1Φ′. Then, the predicted CATE for xnew can be

written as

τ̂Y (xnew) =
∑
i∈D

[ϕ(xnew,1)−ϕ(xnew,0)]
′
piYi

=
∑

i∈D: Wi=1

[ϕ(xnew,1)−ϕ(xnew,0)]
′
pi︸ ︷︷ ︸

ℓ̂1i (xnew|Dℓ)

Yi −
∑

i∈D: Wi=0

[ϕ(xnew,0)−ϕ(xnew,1)]
′
pi︸ ︷︷ ︸

ℓ̂0i (xnew|Dℓ)

Yi.
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Huang and Ascarza: Doing More with Less App-3

Note that this formulation satisfies Assumption App-2 with Do = Dℓ = D and m̂w(Xi|Dm) ≡ 0.

Specefically, the honest estimation assumption is satisfied since pi only depends on the covariates of

customer i.

(b) k-nearest neighbors:

Let Nk(xnew,w) represent the set of the k-nearest neighboring customers in the training set for the

new customer with covariates and treatment assignment (xnew,w). Then, we can express the predicted

CATE as:
τ̂Y (xnew) =

∑
Xi∈Nk(xnew,1)

Yi

k
−

∑
Xi∈Nk(xnew,0)

Yi

k

=
∑

i∈D: Wi=1

1[Xi ∈Nk(xnew,1)]−1[Xi ∈Nk(xnew,0)]

k︸ ︷︷ ︸
ℓ̂1i (xnew|Dℓ)

Yi−

∑
i∈D: Wi=0

1[Xi ∈Nk(xnew,0)]−1[Xi ∈Nk(xnew,1)]

k︸ ︷︷ ︸
ℓ̂0i (xnew|Dℓ)

Yi.

Since the weight only depends on the covariates of customer i, it satisfies Assumption App-2 with

Do =Dℓ =D and m̂w(Xi|Dm)≡ 0.

(c) Random Forest with Honest Estimation:

Let Db
1,Db

2 be the divided samples for the b-th tree (b= 1, · · · ,B), where Db
1 is used to construct the

regression tree and Db
2 is used to generate predictions. Define Lb(xnew,W ) be the leaf in the b-th tree

to which customer (xnew,W ) belongs. Using this notation, we can express the predicted CATE as

follows:

τ̂Y (xnew) =

N∑
i=1

1

B

B∑
b=1

[
1[Xi ∈Lb(xnew,1), i∈Db

2]

|{i∈Db
2 : Xi ∈Lb(xnew,1)}|

− 1[Xi ∈Lb(xnew,0), i∈Db
2]

|{i∈Db
2 : Xi ∈Lb(xnew,0)}|

]
Yi

=
∑

i∈D:Wi=1

1

B

B∑
b=1

(
1[Xi ∈Lb(xnew,1), i∈Db

2]

|{i∈Db
2 : Xi ∈Lb(xnew,1)}|

− 1[Xi ∈Lb(xnew,0), i∈Db
2]

|{i∈Db
2 : Xi ∈Lb(xnew,0)}|

)
︸ ︷︷ ︸

ℓ̂1i (xnew)

Yi−

∑
i∈D:Wi=0

1

B

B∑
b=1

(
1[Xi ∈Lb(xnew,0), i∈Db

2]

|{i∈Db
2 : Xi ∈Lb(xnew,0)}|

− 1[Xi ∈Lb(xnew,1), i∈Db
2]

|{i∈Db
2 : Xi ∈Lb(xnew,0)}|

)
︸ ︷︷ ︸

ℓ̂0i (xnew)

Yi.

Note that the weight function is independent of Yi due to the honest estimation. Therefore, the above

formulation satisfies Assumption App-2

2. We only present the scenario where high-dimensional ridge regression is used in the second-stage

estimation, as the derivations for k-nearest neighbors and random forests with honest estimation are

similar, using the weights derived in 1.(b) and 1.(c).
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Huang and Ascarza: Doing More with Less App-4

Let D1
train, · · · ,D

Q
train be the sample splits of the training set. Define D(−i)

train = ∪q: i/∈Dq
train

Dq
train as the

training set that excludes the subsample that includes the i-th sample. Also, denote êD
(−i)
train(Xi) (for

propensity scores) and m̂D(−i)
(Xi) (for conditional means) as the nuisance models trained using the

data set D(−i)
train. Then, the Robinson’s transformation for each customer is

τ̃i =
Yi − m̂D(−i)

train(Xi)

Wi − êD
(−i)
train(Xi)

.

Now, consider the ridge regression model τ̃i = ϕ(xi)
′β + εi, where ϕ(x) is the high-dimensional

feature transformation function. Let Φ= [ϕ(x1) · · · ϕ(xN)]
′ be the feature matrix. Then, the closed-

form solution for the ridge coefficient is

β̂ = (Φ′Φ+λI)−1Φ′τ̃ .

Denote pi be the i-th row of the matrix (Φ′Φ+ λI)−1Φ′. Then, the predicted CATE for xnew can be

written as

τ̂Y (xnew) =
∑
i∈D

ϕ(xnew)
′pi

(
Yi−m̂

D(−i)
train (Xi)

Wi−ê
D(−i)
train (Xi)

)

=
∑

i∈D:Wi=1

(
ϕ(xnew)′pi

1−ê
D(−i)
train (Xi)

)
︸ ︷︷ ︸

ℓ̂1i (xnew)

[Yi − m̂D(−i)
train(Xi)︸ ︷︷ ︸
m̂1(Xi)

]−
∑

i∈D:Wi=0

(
ϕ(xnew)′pi

1−ê
D(−i)
train (Xi)

)
︸ ︷︷ ︸

ℓ̂0i (xnew)

[Yi − m̂D(−i)
train(Xi)︸ ︷︷ ︸
m̂0(Xi)

].

Note that ℓ̂Wi
i (xnew) is independent of Yi as it only depends on the covariate information. Also, m̂w(Xi)

is independent of Yi and ℓ̂Wi
i (xnew) as it is estimated using D(−i)

train. Therefore, it satisfies Assump-

tion App-2.

3. Let Db
1,Db

2 be the divided samples for the b-th tree (b= 1, · · · ,B), where Db
1 is used to construct the

causal tree and Db
2 is used to generate predictions. Define Lb(xnew be the leaf in the b-th tree to which

customer (xnew,W ) belongs. Using this notation, we can express the predicted CATE as follows:

τ̂Y (xnew) =
∑

i∈D:Wi=1

1

B

B∑
b=1

1[Xi∈Lb(xnew), i∈Db
2]

|{i∈Db
2: Xi∈Lb(xnew)}|︸ ︷︷ ︸

ℓ̂1i (xnew)

Yi −
∑

i∈D:Wi=0

1

B

B∑
b=1

1[Xi∈Lb(xnew), i∈Db
2]

|{i∈Db
2: Xi∈Lb(xnew)}|︸ ︷︷ ︸

ℓ̂0i (xnew)

Yi.

Note that ℓ̂Wi
i (xnew) is independent of Yi due to the honest estimation procedure in Causal Forest.

Therefore, it satisfies Assumption App-2.

A.2.2. Proof for Theorem 1.

Let εYT
i = Yi,T − E[Yi,T (Wi)|Xi] be the variations in Yi,T that cannot be explained by Xi and Wi, and

denote σ2 =Var[εYT
i ].
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Huang and Ascarza: Doing More with Less App-5

Since the experiment data are i.i.d. samples, the variance of the predicted CATEs can be written as

Var
[
τ̂YT

(xnew)
∣∣{Xi,Wi}Ni=1

]
=

∑
i∈Io:Wi=1

Var
{
ℓ̂1i (xnew|Dℓ)[Yi,T − m̂1(Xi|Dm)

∣∣{Xi,Wi}Ni=1

}
+

∑
i∈Io:Wi=0

Var
{
ℓ̂0i (xnew|Dℓ)[Yi,T − m̂0(Xi|Dm)

∣∣{Xi,Wi}Ni=1

}
=

∑
i∈Io:Wi=1

Var
{
ℓ̂1i (xnew|Dℓ)[εYT

i − m̂1(Xi|Dm)
}
+

∑
i∈Io:Wi=0

Var
{
ℓ̂0i (xnew|Dℓ)[εYT

i − m̂0(Xi|Dm)
}

since E[Yi,T (Wi)|Xi] is a constant given (Xi,Wi).

For each individual i, we can write its variance as

Var{ℓ̂wi (xnew|Dℓ)[εYT
i − m̂w(Xi|Dm])}

=E
{
[ℓ̂wi (xnew|Dℓ)]2

}(
Var[εYT

i − m̂w(Xi|Dm)]
)
+Var[ℓ̂wi (xnew|Dℓ)]E2[εYT

i − m̂w(Xi|Dm)]

=E
{
[ℓ̂wi (xnew|Dℓ)]2

}(
σ2 +Var[m̂w(Xi|Dm)]

)
+Var[ℓ̂wi (xnew|Dℓ)]

{
σ2 +E2[m̂w(Xi|Dm)]

}
.

Now, our goal is to bound the variance by showing:

(a) the variance of m̂w(Xi|Dm) =Θ(σ2), where Θ is the asymptotic notation1,

(b) the expectation of the adjustment function E2 [m̂w(Xi|Dm)] do not scale with σ2, and

(c) E
{
[ℓ̂wi (xnew|Dℓ)]2

}
and Var[ℓ̂wi (xnew|Dℓ)] do not scale with σ2.

Proof for (a): To show (a), note that the variance of the adjustment function can be written as:

Var[m̂w(Xi|Dm)] =
∑
j∈Dm

Var[Sj(Xi)Yj,T ]

=
∑
j∈Dm

Var{Sj(Xi)E[Yj,T |Xj]}+
∑
j∈Dm

Var
[
Sj(Xi)ε

YT
j

]
=
∑
j∈Dm

Var{Sj(Xi)E[Yj,T |Xj]}︸ ︷︷ ︸
≡C1

+σ2
∑
j∈Dm

{
Var [Sj(Xi)] +E2 [Sj(Xi)]

}
︸ ︷︷ ︸

≡C2

.

The last equation hold because Var[XY ] = Var[X]Var[Y ] +Var[Y ]E2[X] +Var[X]E2[Y ].

Now, our goal is to show that C1 and C2 do not scale with σ2. In the case when Sj(Xi) is independent

of the outcome (and therefore εYT
j ), Sj(Xi) does not depend on σ2 by construction. Therefore, C1 and C2

1 The definition of Θ-function is as follows: a function f(σ2) = Θ(σ2) if there exists σ2
0 and C1,C2 such that C1σ

2 ≤ f(σ2)≤
C2σ

2 for any σ2 >σ2
0 .
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Huang and Ascarza: Doing More with Less App-6

do not scale with σ2. If m̂ is a potential n-nearest-neighbors estimator, by the fact from the discussion of

Lemma 4 in Wager and Athey (2018), we have

1

2(n− 1)|Dm|
≲Var[Sj(Xi)]≲

1

(n− 1)|Dm|
and 0≤E[Sj(Xi)]≤ 1.

In this case, C1 and C2 do not scale with σ2. Therefore, we can conclude that Var[m̂w(Xi|Dm)] =Θ(σ2).

Proof for (b): If the weight of m̂ only depends on covariates, the expectation can be written as

E[m̂w(Xi|Dm)] =
∑
j∈Dm

E[Sj(Xi)Yj,T (Wj)] =
∑
j∈Dm

E[Sj(Xi)]E[Yj,T (Wj)|Xj].

Therefore, E[m̂w(Xi|Dm)] do not depend on σ2.

If m̂ is a potential n-nearest-neighbors estimator, since 0≤ Sj(Xi)≤ 1, we have

−
∑
j∈Dm

|E[Yj,T (Wj)|Xj]| ≤E[m̂w(Xi|Dm)]≤
∑
j∈Dm

|E[Yj,T (Wj)|Xj]|.

Since the upper bound and lower bound of E[m̂w(Xi|Dm)] do not depend on σ2, we can conclude that

E2 [m̂w(Xi|Dm)] do not scale with σ2.

Proof for (c): When the weight function only depends on the covariate information (e.g., CATE models

in Proposition App-1 other than Causal Forest and R-learner with the honest random forest estimator in the

second stage), ℓ̂wi (xnew|Dℓ) do not scale with σ2 by nature.

When the weight can be viewed as a potential n-nearest neighbors weight (e.g., Causal Forest and R-

learner with the honest random forest estimator in the second stage), we have

1

2(n− 1)|Dℓ|
≲Var[ℓ̂wi (xnew|Dℓ)]≲

1

(n− 1)|Dℓ|
and 0≤E[ℓ̂wi (xnew|Dℓ)]≤ 1

|Dℓ|
.

As a result, E
{
[ℓ̂wi (xnew|Dℓ)]2

}
and Var[ℓ̂wi (xnew|Dℓ)] do not scale with σ2.

A.3. Proof for Corollary 1

First, consider the case when the true CATE τYT
(xnew) > 0. Then, the probability that the learned policy

makes a different decision from the optimal targeting policy is

P [τYT
(xnew) · τ̂YT

(xnew)< 0]

=P [τ̂YT
(xnew)< 0] =P [τ̂YT

(xnew)− τYT
(xnew)<−τYT

(xnew)]

=P

 τ̂YT
(xnew)− τYT

(xnew)√
Var [τ̂YT

(xnew)]︸ ︷︷ ︸
≡Z

<
−τYT

(xnew)√
Var [τ̂YT

(xnew)]

= FZ

(
−τYT

(xnew)√
Var [τ̂YT

(xnew)]

)
,
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where Z ≡ τ̂YT
(xnew)−τYT

(xnew)√
Var[τ̂YT (xnew)]

has mean zero and variance one, and FZ is the cumulative distribution

function of Z. Since (i)
−τYT

(xnew)√
Var[τ̂YT (xnew)]

is increasing in
√

Var [τ̂YT
(xnew)] and (ii) FZ is a weakly increasing

function, we can conclude that the mistarteting probability is weakly increasing in
√

Var [τ̂YT
(xnew)].

Similarly, for the case when the true τYT
(xnew)< 0, we have

P [τYT
(xnew) · τ̂YT

(xnew)< 0]

=P [τ̂YT
(xnew)> 0] =P[τ̂YT

(xnew)− τYT
(xnew)>−τYT

(xnew)︸ ︷︷ ︸
=|τYT (xnew)|

]

=P

 τ̂YT
(xnew)− τYT

(xnew)√
Var [τ̂YT

(xnew)]︸ ︷︷ ︸
≡Z

>
|τYT

(xnew)|√
Var [τ̂YT

(xnew)]


= 1−P

[
Z <

|τYT
(xnew)|√

Var [τ̂YT
(xnew)]

]
= 1−FZ

(
|τYT

(xnew)|√
Var [τ̂YT

(xnew)]

)
,

Note that FZ

(
|τYT (xnew|)√
Var[τ̂YT (xnew)]

)
is weakly decreasing in

√
Var [τ̂YT

(xnew)] since (i)
|τYT (xnew)|√
Var[τ̂YT (xnew)]

becomes smaller when
√

Var [τ̂YT
(xnew)] becomes larger and (ii) FZ is a weakly increasing function.

Therefore, the mistargeting probability is weakly increasing in
√

Var [τ̂YT
(xnew)].

Now, let us consider the case when the firm aims to target customers with CATEs larger than the threshold

c. Following the same approach, we can write the mistargeting probability is as:

P [(τYT
(xnew)− c) · (τ̂YT

(xnew)− c)< 0] =
P

[
τ̂YT

(xnew)−τYT
(xnew)√

Var[τ̂YT (xnew)]
<

−|τYT (xnew)−c|√
Var[τ̂YT (xnew)]

]
, if τYT

(xnew)− c > 0,

1−P
[

τ̂YT
(xnew)−τYT

(xnew)√
Var[τ̂YT (xnew)]

<
|τYT (xnew)−c|√
Var[τ̂YT (xnew)]

]
, if τYT

(xnew)− c < 0.

Following the above analysis, it is clear that the mistargeting probability increases as Var [τ̂YT
(xnew)]

increases.

A.4. Proof for Theorem 2

1. By the comparability assumption, we have

ỸT (ST0
,Xi)≡EH [Yi,T |ST0

,Xi] =EE [Yi,T |ST0
,Xi] .

By the surrogacy assumption, we have

EE [Yi,T (Wi)|Xi] =EE [Yi,T |ST0
(Wi),Xi] .

Combining these two observations gives

τYT
(Xi) =EE [Yi,T (1)|Xi]−EE [Yi,T (0)|Xi] = ỸT (Si,T0

(1),Xi)− ỸT (Si,T0
(0),Xi).
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2. By the law of total variance, we have

Var[Yi,T (Wi)|Xi] =E (Var[Yi,T (Wi)|Xi,Si,T0
(Wi)])+Var (E[Yi,T (Wi)|Xi,Si,T0

(Wi)])

=E (Var[Yi,T (Wi)|Xi,Si,T0
(Wi)])+Var[ỸT (Si,T0

(Wi),Xi)]

>Var[ỸT (Si,T0
(Wi),Xi)]

since E (Var[Yi,T (Wi)|Xi,Si,T0
(Wi)])> 0.

A.5. Proof for Corollary 2

By the law of total variance, we have

Var[ỸT (Si,T0
(Wi),Xi)]

=E
(
Var[ỸT (Si,T0

(Wi),Xi)|Si,T ′
0
(Wi)]

)
+Var

(
E[ỸT (Si,T0

(Wi),Xi)|Si,T ′
0
(Wi)]

)
=E

(
Var[ỸT (Si,T0

(Wi),Xi)|Si,T ′
0
(Wi)]

)
+Var

(
E[Yi(Wi)|Si,T ′

0
(Wi)]

)
=E

(
Var[ỸT (Si,T0

(Wi),Xi)|Si,T ′
0
(Wi)]

)
+Var

[
ỸT (Si,T ′

0
(Wi),Xi)

]
>Var[ỸT (Si,T ′

0
(Wi),Xi)]

since E
(
Var[ỸT (Si,T0

(Wi),Xi)|Si,T ′
0
(Wi)]

)
> 0.

B. Implications of Multiplicative Noise Structure
In this appendix, we first use a simple example to elucidate how a surrogate model may result in higher

variance for surrogate models when the outcome variable is a product of two distinct variables. We then

showcase the advantages of the separate imputation approach in terms of variance reduction.

B.1. Illustration Using Simple Linear Regressions

Let’s consider the following data generating process:

Ti = Si + εTi , Λi = Si + εΛi ,

Yi ≡Ti ×Λi = S2
i + (εΛi + εTi )Si︸ ︷︷ ︸

Additional Heterogeneity

+εTi ε
Λ
i ,

(App-1)

where εTi ∼N (0, σ2
T ) and εΛi ∼N (0, σ2

Λ) are independent. Essentially, the multiplicative structure result in

a random effect (εΛi + εTi )Si that varies across individual.

Now consider the “single” imputation approach where we fit a linear regression model Yi = γ0+γ1S
2
i +ηi

using least-square estimation. Using the standard result, we have

γ̂1 = 1+

∑
i(S

2
i −S2) [(εΛi + εTi )Si + εTi ε

Λ
i ]∑

i

(
S2
i −S2

)2 .

Electronic copy available at: https://ssrn.com/abstract=4254202

Web
 App

en
dix



Huang and Ascarza: Doing More with Less App-9

Note that (i) γ̂1 is an unbiased estimator, i.e., E[γ̂1] = 1, and (ii) the variance of γ̂1 is

Var(γ̂1) =
1[∑

i

(
S2
i −S2

)2]2σ2
Λσ

2
T +

∑
i S

2
i

(
S2
i −S2

)2[∑
i

(
S2
i −S2

)2]2 [σ2
Λ +σ2

T
]
.

The first term in the above equation is the variance of the estimated coefficient if there is no random effect

(εΛi + εTi )Si. The second term captures the additional variance caused by the additional heterogeneity term

((εΛi + εTi )Si). This simple analysis shows that the multiplicative structure can increase the variance of the

surrogate model.

Next, we consider the “separate imputation” approach, where we fit two regression models Ti = β0 +

β1Si + εTi and Λi = δ0 + δ1Si + εΛi . In this case, we have

Var(β̂1) =
1∑

i

(
Si −S

)2σ2
T , Var(δ̂1) =

1∑
i

(
Si −S

)2σ2
Λ.

In this case, both variance terms are not affected by (εΛi + εTi )Si. Therefore, the separate imputation

approach has much smaller variance compared to the single imputation model.

B.2. Simulation Evidence

Next, we turn to simulation evidence to underscore the variance reduction benefit of the proposed separate

imputation approach. We generate 100 sets of historical data (d = 1, · · · ,100), each comprising 500 cus-

tomers, in accordance with the data generation process detailed in (App-1), where Si ∼N (0,1). For each

set, we implement four different approaches:

1. Single linear regression: Yi = γ0 + γ1S
2
i + ηi.

2. Two separate linear regressions: Ti = β0 +β1Si + εTi and Λi = δ0 + δ1Si + εΛi .

3. Single generalized regression forest of Yi on Si.

4. Two separate generalized regression forests using Si as the independent variable: one for Ti and another

for Λi.

Once we construct those models, we apply them to the same set of 10,000 test customers to evaluate the

performance. In particular, we consider the bias (i.e., the average of 1
100

∑100

d=1(Ŷ
d
i − S2

i ) across 10,000

customers) and the variance (i.e., the average of 1
99

∑100

d=1(Ŷ
d
i −S2

i )
2 across 10,000 customers) of different

approaches.

Figure App-1 showcases the bias and variance of each method across varying noise levels, with σ2
T and

σ2
Λ ranging from 1 to 5. The results indicate that while random effects do not influence a model’s bias

(given that the bias remains consistent across different noise levels), they profoundly impact the variance of

predictions. Notably, the variance associated with the single imputation approach grows exponentially with

respect to σ2
T and σ2

Λ. In contrast, this growth rate is considerably more tempered for the separate imputation

method. These observations underscore that the separate imputation method can effectively diminish the

variance of predicted values by approximately 20% to 80% in comparison to the single imputation approach.
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Huang and Ascarza: Doing More with Less App-10

Figure App-1 Bias and Variance Analysis.
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Note. Each dot illustrates the average bias and variance across 10,000 test customers.

C. Further Details about the Simulation Analyses

In this appendix, we provide details about the simulation analyses in Section 5 of the main document.

C.1. Simulation Setting

For the simulation, we consider a company that conducts a marketing intervention and aims to maximize

the total purchase counts (Yi,10) over a ten-week time-frame following the intervention. We simulate the

data based on the following data generating process:

1. There are two pre-treatment covariates which are drawn i.i.d. from the standard normal distribution,

i.e., Xi,1,Xi,2 ∼i.i.d. N (0,1).

2. At the end of each period, a customer churns with probability pi,t.

3. The realized purchase counts in each period when a customer is alive follows a Poisson distribution

with mean purchase rate λi,t, i.e., S̃i,t ∼Poisson(λi,t).

4. The intervention reduces customers’ churn probability (pi,t) in the first three periods. In particular, the

churn probability is

(Treatment) pi,t(Wi = 1) =

{
1

exp(1.5+0.5Xi,1+0.4Xi,2)
, if t≤ 3,

1
exp(1.4+0.5Xi,1+0.4Xi,2)

, if t > 3.

(Control) pi,t(Wi = 0) =
1

exp(1.4+0.5Xi,1 +0.4Xi,2)
, ∀t= 1, · · · ,10.
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5. The intervention increases customers’ purchase rates in the first three periods and has no impact on

later periods. The purchase rate follows:

(Treatment) λi,t(Wi = 1) =

{
exp(1+0.5Xi,1 +0.5Xi,2), if t≤ 3,
exp(0.9+0.5Xi,1 +0.4Xi,2), if t > 3.

(Control) λi,t(Wi = 0) = exp(0.9+0.5Xi,1 +0.4Xi,2), ∀t= 1, · · · ,10.

Note that we choose the logit link function for the churn probability to ensure that it lies between 0 and

1. Additionally, we use the exponential link function for the purchase rate to ensure that it is non-negative.

C.2. Noise Accumulation Behaviors

We present evidence of noise accumulation due to customer attrition. To do this, we first calculate the

unexplained variations as |Yi,T − E[Yi,T |Xi,Wi]|, where E[Yi,T |Xi,Wi] is the expected T -period under

the above data generating process. Figure App-2 depicts these unexplained variations in purchases over T

periods, ranging from T = 1 through T = 10. Similar to Figure 5, it clearly shows that as the observation

period (T ) lengthens, the extent of unexplained variations also grows.

Figure App-2 Unexplained Variations in Yi,t for T = 1, · · · ,10.
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Note. Each dot illustrates the median of unexplained variations for all customers in the experimental data. The grey shaded area

presents the range between the highest 10% and the lowest 10% of these variations.

Next, we show that unexplained variations have positive serial correlations over different periods. We

first calculate the unexplained variations in Si,t, i.e., εSi,t = Si,t−E[Si,t|Xi,Wi], for t= 1, · · · ,10. Then, we

examine the cross-correlation between residuals, given by Cor(εSi,t1 , ε
S
i,t2

). As presented in Figure App-3,

there is a persistent positive correlation between per-period unexplained variations for each 1< t1 < t2 ≤

10. Note that our DGP assumes no customer churn in the first period, so the unexplained variation εSi,1 is

expected to be zero as it is purely driven by independent noises in purchase intensity. Therefore, we see

zero correlation between εSi,1 and εSi,t for t > 1.

Note that our DGP assumes no customer churn in the first period, so the unexplained variation εSi,1 is

expected to be zero as it is purely driven by independent noises in purchase intensity. Therefore, we see

zero correlation between between εSi,1 and εSi,t for t > 1.
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Figure App-3 Cross-correlation Matrix of Unexplained Variations in Each Period.

0 0 0 0 0 0 0 0 0

0.3 0.3 0.2 0.2 0.2 0.2 0.2 0.1

0.4 0.4 0.4 0.3 0.3 0.3 0.2

0.5 0.5 0.4 0.4 0.4 0.3

0.6 0.5 0.5 0.4 0.4

0.6 0.6 0.5 0.5

0.7 0.6 0.6

0.6 0.6

0.7

1

2

3

4

5

6

7

8

9

2 3 4 5 6 7 8 9 10
Period Since Intervention

P
er

io
d 

S
in

ce
 In

te
rv

en
tio

n
0.0

0.2

0.4

0.6

value

C.3. Evaluation Procedure

The following procedure is performed to evaluate the performance of different approaches:

1. Derive the outcome variable Ÿ using the actual outcomes for the default and myopic approaches, or

the historical data for the proposed, single, and BG/NBD imputation approaches.

2. Generate one training set (with N/2 treated customers and N/2 non-treated customers) and one vali-

dation set (with 5,000 customers for each condition).

3. Construct CATE models (τ̂Ÿ ) using the training set.

4. Calculate the AUTOC value of τ̂Ÿ using the validation set.

We generate 200 bootstrap samples and report the mean and standard deviations of each quantity for per-

formance evaluation.

C.4. Specification of Surrogate Indices

As discussed in Section 5 of the main document, we utilize historical data (H) to generate surrogate indices.

Here, we present our model specifications for different imputation methods:

• (Separate Imputation) We constructed two linear regressions to predict the observed last purchase time

and average purchase rate per active period:

Ti,10 = αT
0 +βT

1 Xi,1 +βT
2 Xi,2 +βT

3 Xi,1 ·Xi,2 +

T0∑
t=1

(
γT
t Si,t + ξTt Xi,1Si,t + ηT

t Xi,1Si,t

)
+ εTi ,

Λi,10 = αΛ
0 +βΛ

1 Xi,1 +βΛ
2 Xi,2 +βΛ

3 Xi,1Xi,2 +

T0∑
t=1

(
γΛ
t Si,t + ξΛt Xi,1Si,t + ηΛ

t Xi,2Si,t

)
+ εΛi ,

where Ti,10 is the observed last transaction time and Λi,10 denotes the average per-period purchase

counts until the observed last transaction.

• (Single Imputation) We fit the following linear regression to predict Yi,T :

Yi,10 = αY
0 +βY

1 Xi,1 +βY
2 Xi,2 +βY

3 Xi,1Xi,2+
T0∑
t=1

(
γY
t Si,t + ξYt Xi,1Si,t + ηY

t Xi,2Si,t

)
+ εYi .
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• (BG/NBD) We employ a BG/NBD model with time-invariant covariates Xi,1 and Xi,2. Linear speci-

fications were used for all key parameters. After generating expected future purchase counts after T0,

we add it with the observed purchase counts until T0 to capture the short-term treatment effects.

C.5. Specification of CATE Models

In this simulation, we use the following CATE models to corroborate that our findings are not driven by a

particular method for CATE estimation:

1. Causal Forest (Wager and Athey 2018): We construct a Causal Forest model using the grf package

with the default parameters.

2. R-lasso (Nie and Wager 2021): We estimate an R-learner using the rlearner package, with both the

nuisance models and the CATE function estimated using lasso regression (polynomials of covariates

of degree three) with ten-fold cross-validation.

3. S-GRF: We predict the conditional expectation of the long-term outcome Ÿi given the treatment assign-

ment Wi and the covariates Xi using a generalized random forest (GRF) model. We then compute the

predicted CATE for each validation customer j as the difference between the predicted value given

Wj = 1 and he predicted value given Wj = 0. We implement the GRF model using the grf package

with the default parameters. 2

4. T-GRF: we construct two GRF models of Ÿi on Xi, one for treated customers and another for non-

treated customers. We use the default parameters in the grf package.

C.6. Replication Results of AUTOCs for Different CATE Models

Table App-1 presents the mean and standard deviation of AUTOC values for various approaches using the

CATE model as either (i) S-GRF or (ii) T-GRF. These findings align with those from the Causal Forest in

Table App-1. Specifically, the separate approach consistently excels over other methods regardless of the

CATE estimation model or the size of the training set. In contrast, the single and BG/NBD imputations fall

short when compared to the separate and myopic strategies. However, it’s noteworthy that all short-term

proxies yield superior targeting performance in comparison to the default method, irrespective of the sample

size.

C.7. Sample Size Efficiency

We investigate the sample size efficiency of different approaches. Figure App-4 displays the AUTOC values

for various CATE models and training sample sizes. The results indicate that CATE models utilizing short-

term proxies consistently outperform the default approach, regardless of the training sample size. Moreover,

the separate imputation method persistently surpasses other methods in terms of AUTOC for the same

2 We chose the default parameters in the simulation because automatic hyperparameter tuning procedures are time-consuming when
the sample size is large (i.e., when N = 50,000). However, the results for the N = 1,000 case suggest that the findings are almost
the same.
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Table App-1 Comparison of AUTOC Values for Different Outcomes and CATE Models.

Outcome Ÿ
N = 1,000 N = 50,000

S-GRF T-GRF S-GRF T-GRF
Separate Imputation 0.79 (0.10) 0.76 (0.10) 0.91 (0.02) 0.88 (0.02)
Single Imputation 0.70 (0.17) 0.65 (0.17) 0.89 (0.02) 0.85 (0.02)
BG/NBD Imputation 0.70 (0.15) 0.68 (0.14) 0.89 (0.02) 0.85 (0.02)
Myopic (Yi,3) 0.73 (0.13) 0.71 (0.14) 0.90 (0.02) 0.86 (0.02)
Default (Yi,10) 0.40 (0.25) 0.41 (0.25) 0.64 (0.05) 0.58 (0.04)

Higher AUTOC reflects better prioritization rule and therefore superior targeting performance. We average the
results over 200 replications and show in parentheses the standard deviation.

CATE model and training sample size. These findings suggest that incorporating short-term outcomes is a

viable strategy for enhancing targeting performance, as it enables more accurate CATE estimation without

requiring substantially larger sample sizes.

Figure App-4 Area-under-TOC Curves: CATE Models with Different Training Sample Size.
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Note. Each point reports the average over 200 simulation replications. The dashline represents the AUTOC value when the priori-

tization rule is based on the true CATE.

C.8. Trade-off between Information and Noise Accumulation

We reproduce the analyses described in Section 5.5 for different approaches and CATE models. Figure App-

5 shows the results of AUTOCs for various CATE models and the number of periods used for surrogacy

construction. Our results indicate that (i) using short-term proxies consistently leads to higher AUTOC

compared to using the actual long-term outcome (except for R-lasso), (ii) the separate imputation method

outperforms other short-term proxies regardless of the CATE models used for estimation, (iii) the separate

imputation method shows higher robustness to noise, as the AUTOC declines more slowly, and (iv) using

T0 = 3 (i.e., the minimal number of periods such that the surrogacy assumption is satisfied) generally yields

the most effective targeting performance.
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Figure App-5 Area-under-TOC Curve: CATE Models for Outcomes Using Different Periods of Information.
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Note. Each point reports the average over 200 simulation replications together with the two standard error interval. The larger the

AUTOC, the better targeting performance.
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D. Further Details for the Empirical Application
In this appendix, we provide additional analyses for the empirical application presented in Section 6 of the

main document.

D.1. Specification of Surrogate Indices

To construct the surrogate indices, we gathered historical data of customers who were acquired at least ten

weeks before the experiment started (4,031 in total) and imputed different outcome variables as follows:

• Ỹ Single
10 (Si,1,Xi): we fit a random forest model (Athey et al. 2019) of Yi,10 on the first-week purchase

(Si,1) and customer covariates (Xi), reported in Appendix 6.1. We perform automatic parameter tuning

using the function provided by the grf package.

• Ỹ Sep
10 (Si,1,Xi): we fit two random forests, one for the observed last purchase week (Ti,10) and another

for the purchase counts per period until the last purchase week (Λi,10 ≡ Yi,10/Ti,10), on Si,1 and Xi.

We perform automatic parameter tuning using the function provided by the grf package.

• Ỹ BTYD
10 (Si,1,Xi): we fit a BG/NBD model with Xi as time-invariant covariates.

D.2. Specification of CATE Models

Given an outcome variable Ÿi, we construct four types of CATE models to show robustness of our findings,

including:

1. S-learner: we predict E[Ÿi|Wi,Xi] by regressing Ÿi on Wi,Xi using random forest and perform the

automatic hyperparameter tuning using the method implemented in the grf package.

2. T-learner: we construct two random forests of Ÿi on Xi, one for treated customers and another for non-

treated customers. We perform the automatic hyperparameter tuning using the method implemented in

the grf package.

3. X-learner (Künzel et al. 2019): all the outcome models in X-learner are estimated using the random

forest with automatic hyperparameter tuning. We estimate the propensity score using the probability

forest implemented in the grf package.

4. Causal Forest (Wager and Athey 2018): we use the causal forest function implemented in the grf

package with automatic hyperparameter tuning.

D.3. Details for Policy Learning Using Doubly Robust Scores

In this section, we provide a detailed explanation of how we implement doubly robust policy learning, as

proposed by Athey and Wager (2021). Specifically, for each training-validation split, we learn the policy by

the following steps:

1. Compute the outcome variable Ÿ for the training set.

2. Compute the (honest) doubly robust score for i in the training set:

Γ̂i =
[
m̂1(Xi)− m̂0(Xi)

]
+

Wi − ê(Xi)

ê(Xi)

[
Yi − m̂Wi(Xi)

]
.
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We use grf and policytree packages (Sverdrup et al. 2020) to derive the doubly robust score for

each customer.

3. Derive the targeting policy π̂ :Xi →{0,1} by solving the optimization problem:

π̂= argmax
π

∑
i∈Dtrain

[2π(Xi)− 1] Γ̂i,

where we constrain π in the class of probability forest in the grf package.

D.4. Replication Results for the Motivating Example

D.4.1. Targeting for Short-term Outcome. In the motivating example (Section 2 of the main doc-

ument), we show that the focal company can develop an effective CATE model when the outcome variable

is Yi,1. Figure App-6 presents the GATEs on Yi,1 across quintiles based on predicted CATE. This chart

is constructed similarly to Figure 2, now presenting the results for the different CATE models. While the

actual CATE curves are not perfectly decreasing for all models, they are still effective in distinguishing

customers with high CATEs from those with low CATEs, as Q1,Q2,Q3 have higher treatment effects than

Q4 and Q5 have.

Figure App-6 CATE Models for Yi,1.
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Note. Each point represents the mean of bootstrap results on the validation customers together with the one standard deviation

interval. Groups Q1, · · · ,Q5 are categorized based on the decreasing order of the predicted CATE.

D.4.2. CATE Models for Long-term Outcome. Similarly, Figure App-7 illustrates the predicted

and actual GATEs when using Yi,10 as outcome variable. Notably, all CATE models produce the same V-

shaped curve, indicating that the firm would overlook a significant proportion (e.g., the bottom quintile

group Q5) of the “should-target” customers when the targeting policy is based on these models.

D.5. Replication Results for the GATE Analysis

Figure App-8 displays the GATEs by predicted CATE levels of different outcome variables. Notably, regard-

less of the methods used, the separate imputation method consistently produces the steepest CATE curve,

suggesting the superiority of targeting based on our proposed solution. Note that both Single and Myopic

approaches also result in reasonably good performance when compared to models based on Yi,10.
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Figure App-7 CATE Models for Yi,10.
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Note. Each point represents the mean of bootstrap results on the validation customers together with the one standard deviation

interval. Groups Q1, · · · ,Q5 are categorized based on the decreasing order of the predicted CATE.

Figure App-8 Actual group average treatment effects by predicted CATE levels on different outcome vari-

ables.
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Note. Each point represents the mean of bootstrap results on the validation customers together with the one standard deviation

interval (the errorbar). Groups QŸ
1 , · · · ,QŸ

5 are defined by decreasing order of treatment effect, as predicted by the CATE model

for different outcome variables. GATEs are computed from Yi,10.

D.6. Replication Results for Policy Improvement

In this appendix, we replicate the expected profit improvement results in Table 3 of the main document

using the CATE models outlined in Appendix D.2. The results demonstrate the robustness of our findings:

regardless of the CATE model used for estimation, the proposed separate imputation approach consistently

yields the best profitability. Additionally, all targeting policies based on short-term outcomes consistently

yield a positive profit improvement, while targeting using the default approach results in profit loss.
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Table App-2 Expected Profit Improvement: Targeting Based on Different Models.

Outcome Variable T-learner S-learner X-learner Causal Forest Policy Learning
Separate Imputation 5.81% (4.19%) 5.66% (4.27%) 3.98% (3.53%) 1.64% (4.32%) 4.57% (3.90%)
Single Imputation 4.06% (4.51%) 4.45% (5.17%) 2.29% (4.31%) −1.44% (4.71%) 3.66% (4.75%)
BG/NBD Imputation 0.95% (2.77%) 1.67% (2.80%) 1.93% (2.32%) 1.14% (4.33%) −0.26% (4.36%)
Myopic 3.34% (3.60%) 3.08% (3.65%) 2.96% (2.94%) 1.09% (4.41%) 3.51% (4.58%)
Default −3.52% (3.17%) −1.75% (2.86%) −0.89% (2.85%) −4.21% (3.7-%) −3.44% (3.37%)

We average the profit improvement over 200 replications and show in parentheses the standard deviations.

D.7. How Many Periods Should the Focal Firm Use?

Figure App-9 compares the expected profit improvement from targeting based on surrogate indices con-

structed using different periods of outcomes. The result suggests that using one-period outcome in surrogate

models gives the highest profit, and targeting based on short-term signals consistently outperforms or is as

good as targeting based on the actual long-term outcome.

Figure App-9 Expected Profit Improvement: Comparison of Different Periods Used for Surrogate Models.
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Note. Each point represents the mean of bootstrap results on the validation customers together with the one standard deviation

interval (the errorbar). The dashed line reports the expected profit improvement when the targeting policy is based on predicted

CATEs on Yi,10.
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